1 EM Algorithm Recap

E-step:

\[Q^{(i)}_t(c_t) = P(c_t | x_t, \theta^{(i-1)}) \]

M-step:

\[\theta^{(i)} = \arg\max_{\theta \in \Theta} \sum_{t=1}^{n} \sum_{c_t=1}^{K} Q^{(i)}_t(c_t) \log(P(x_t, c_t | \theta)) \]

1.1 EM for Mixture Models

For any mixture model with \(\pi \) as mixture distribution, and any arbitrary parameterization of likelihood of data given cluster assignment, one can write down a more detailed form for EM algorithm.

E-step On iteration \(i \), for each data point \(t \in [n] \), set

\[Q^{(i)}_t(c_t) = P(c_t | x_t, \theta^{(i-1)}) \]

Note that

\[Q^{(i)}_t(c_t) = P(c_t | x_t, \theta^{(i-1)}) \]
\[\propto p(x_t | c_t, \theta^{(i-1)}) \times P(c_t | \theta^{(i-1)}) \]
\[\propto p(x_t | c_t, \theta^{(i-1)}) \times P(c_t | \theta^{(i-1)}) \]
\[= \frac{p(x_t | c_t, \theta^{(i-1)}) \cdot \pi^{(i-1)}[c_t]}{\sum_{c_{t}=1}^{K} p(x_t | c_t, \theta^{(i-1)}) \cdot \pi^{(i-1)}[c_t]} \]

So all we need to fill out the \(n \times K \) sized \(Q \) matrix is to have a current guess at \(\pi \) and the ability to compute \(p(x_t | c_t, \theta^{(i-1)}) \) up to multiplicative factor.
\[\theta = \arg\max_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log P(x_t, c_t = k|\theta) \]

\[= \arg\max_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log P(x_t|c_t = k, \theta) \times P(c_t = k|\theta) \]

\[= \arg\max_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (P(x_t|c_t = k, \theta) \times \pi[k]) \]

\[= \arg\max_{\theta \in \Theta} \frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (P(x_t|c_t = k, \theta)) + \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (\pi[k]) \]

Using \(\Theta \setminus \pi \) to denote the set of parameters excluding \(\pi \),

\[= \arg\max_{\theta \in \Theta \setminus \pi} \left(\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (P(x_t|c_t = k, \theta)) + \frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (\pi[k]) \right) \]

\[= \left(\arg\max_{\theta \in \Theta \setminus \pi} \left(\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (P(x_t|c_t = k, \theta)) \right), \arg\max_{\pi} \left(\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (\pi[k]) \right) \right) \]

Notice that the term in red is exactly the optimization we solved for in GMM example. We know this already! The solution is:

\[\pi_k = \frac{\sum_{t=1}^{n} Q^{(i)}_t(k)}{n} \]

and this is the same for any mixture model.

On the other hand, the optimization problem,

\[\arg\max_{\theta \in \Theta \setminus \pi} \left(\frac{1}{n} \sum_{t=1}^{n} \sum_{k=1}^{K} Q^{(i)}_t(k) \log (P(x_t|c_t = k, \theta)) \right) \]

is simply a weighted version of MLE when our observation includes \(c_t \)’s the hidden or latent variables. In the M-step, this is the only portion that changes the mixture distribution solution has same form always.

2 Mixture of Multinomials

Each \(\theta \in \Theta \) consist of mixture distribution \(\pi \) which is a distribution over the choices of the \(K \) clusters or types, \(p_1, \ldots, p_K \) are \(K \) distributions over the \(d \) items. The latent variables are \(c_1, \ldots, c_n \) the cluster assignments for the \(n \) points indicating that the \(t^{th} \) data point was drawn using distribution \(p_{c_t} \). \(x_1, \ldots, x_n \) are the \(n \) observations.
Story: You own a grocery store and multiple customers walk in to your store and buy stuff. You want to group customers into K groups based on distribution over the d products/choices in your store. Think of customers as being independently drawn and they each belong to one of K groups. We will first start with a simple scenario and build up to a more general one. To start with, say each day a customer walks in to your store and buys $m = 1$ product. The generative story then is that we first draw customer type $c_t \sim \pi$ from a mixture distribution π, next associated with type c_t, there is a distribution p_{c_t} over products the customer would buy. We draw $x_t \in [d]$ the product the customer bought as $x_t \sim p_{c_t}$. That is

$$p(x_t|c_t = k, \theta) = p_{c_t}[x_t]$$

Next we can move to a slightly more complex scenario where the customer on every round buys (fixed) $m > 1$ products by drawing x_t as m samples from the multinomial distribution. That is,

$$p(x_t|c_t = k, \theta) = \frac{m!}{x_t[1]! \cdots x_t[d]!} p_k[1]^{x_t[1]} \cdots p_k[d]^{x_t[d]}$$

where $x_t[j]$ indicates the amount of product j bought by the customer t.

2.1 Mixture of Multinomials (Primer $m = 1$)

E-step On iteration i, for each data point $t \in [n]$, set

$$Q_t^{(i)}(k_t) = \frac{p(x_t|c_t, \theta^{(i-1)}) \cdot \pi^{(i-1)}[c_t]}{\sum_{c_t=1}^{K} p(x_t|c_t, \theta^{(i-1)}) \cdot P(c_t|\theta^{(i-1)})}$$

$$= \frac{p^{(i-1)}_{c_t}[x_t] \cdot \pi^{(i-1)}[c_t]}{\sum_{c_t=1}^{K} p(x_t|c_t, \theta^{(i-1)}) \cdot \pi^{(i-1)}[c_t]}$$

M-step As we already saw, we set

$$\pi_k = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{n}$$

Now as for the remaining parameters, we want to maximize

$$\arg \max_{p_1, \ldots, p_K} \left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \log (p_k[x_t]) \right)$$

Define $L(p_1, \ldots, p_K) = \sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \log (p_k[x_t])$. We want to optimize $L(p_1, \ldots, p_K)$ w.r.t. p_1, \ldots, p_k s.t. each p_k is a valid probability distribution over $\{1, \ldots, d\}$. As an example, to find the optimal p_k, we want to optimize over p_k subject to the constraint $\sum_{j=1}^{d} p_k[j] = 1$ (i.e. its a distribution), we do so by introducing Lagrange variables. That is we find $p_k[j]$’s by taking derivative and equating to 0 the following Lagrangian objective,

$$L(p_1, \ldots, p_K) + \lambda_k (1 - \sum_{j=1}^{d} p_k[j])$$

3
Taking derivative and equating to 0, we want to find p_k s.t.,
\[
\sum_{t=1}^{n} Q_t^{(i)}(k) \frac{1}{p_k[x_t]} - \lambda_k = 0
\]
In other words, for every $j \in [d],$
\[
\sum_{t:x_t=j} Q_t^{(i)}(k) \frac{1}{p_k[j]} - \lambda_k = 0
\]
Hence we conclude that
\[
p_k[j] \propto \sum_{t:x_t=j} Q_t^{(i)}(k)
\]
Hence,
\[
p_k[j] = \frac{\sum_{t:x_t=j} Q_t^{(i)}(k)}{\sum_{t=1}^{n} Q_t^{(i)}(k)}
\]
Thus for the M-step when we are dealing with the mixture model with exactly $m = 1$ purchase
on every round, we get that, for every $k \in [K]$ and every $j \in [d],$
\[
p_k[j] = \frac{\sum_{t:x_t=j} Q_t^{(i)}(k)}{\sum_{t=1}^{n} Q_t^{(i)}(k)}
\]

2.2 Mixture of Multinomials ($m > 1$)

E-step On iteration i, for each data point $t \in [n]$, set
\[
Q_t^{(i)}(c_t) = \frac{p(x_t|c_t, \theta^{(i-1)}) \cdot \pi^{(i-1)}[c_t]}{\sum_{k=1}^{K} p(x_t|k, \theta^{(i-1)}) \cdot P(k|\theta^{(i-1)})} = \frac{p_{c_t[1]}x_t[1] \cdots p_{c_t[d]}x_t[d] \cdot \pi^{(i-1)}[c_t]}{\sum_{c_t=1}^{K} p_{c_t[1]}x_t[1] \cdots p_{c_t[d]}x_t[d] \cdot \pi^{(i-1)}[c_t]}
\]

M-step For mixture distribution, as usual,
\[
\pi_k = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)}{n}
\]
Now as for the remaining parameters, we want to maximize
\[
\arg\max_{p_1, \ldots, p_K} \left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \log (P(x_t|c_t = k, \theta)) \right)
\]
\[
= \arg\max_{p_1, \ldots, p_K} \left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \log (p_k[x_t = 1] \cdots p_k[d]x_t[d]) \right)
\]
\[
= \arg\max_{p_1, \ldots, p_K} \left(\sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \sum_{j=1}^{d} x_t[j] \log (p_k[j]) \right)
\]
Again to solve this, define $L(p_1, \ldots, p_K) = \sum_{t=1}^{n} \sum_{k=1}^{K} Q_t^{(i)}(k) \sum_{j=1}^{d} x_t[j] \log(p_k[j])$. We want to optimize $L(p_1, \ldots, p_K)$ w.r.t. p_1, \ldots, p_K s.t. each p_k is a valid probability distribution over $\{1, \ldots, d\}$. As an example, to find the optimal p_k, we want to optimize over p_k subject to the constraint $\sum_{j=1}^{d} p_k[j] = 1$ (i.e. its a distribution), we do so by introducing Lagrange variables. That is we find $p_k[j]$’s by taking derivative and equating to 0 the following Lagrangian objective,

$$L(p_1, \ldots, p_K) + \lambda_k(1 - \sum_{j=1}^{d} p_k[j])$$

Taking derivative and equating to 0, we want to find p_k s.t.,

$$\sum_{t=1}^{n} Q_t^{(i)}(k) \sum_{j=1}^{d} x_t[j] \frac{1}{p_k[j]} - \lambda_k = 0$$

In other words, for every $j \in [d],$

$$\sum_{t=1}^{n} Q_t^{(i)}(k) \frac{x_t[j]}{p_k[j]} - \lambda_k = 0$$

Hence we conclude that

$$p_k[j] \propto \sum_{t=1}^{n} Q_t^{(i)}(k)x_t[j]$$

Hence,

$$p_k[j] = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)x_t[j]}{\sum_{j=1}^{d} \sum_{t=1}^{n} Q_t^{(i)}(k)x_t[j]} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)x_t[j]}{\sum_{t=1}^{n} Q_t^{(i)}(k) \left(\sum_{j=1}^{d} x_t[j] \right)} = \frac{\sum_{t=1}^{n} Q_t^{(i)}(k)x_t[j]}{m \sum_{t=1}^{n} Q_t^{(i)}(k)}$$