Outline

- review of dependencies; info in BNs; [lecture II, III] and introduce running example

- Why trees are nice (variable elimination
 \rightarrow \text{message passing from a child to its single parent})

- e.g., as in the "Job" node, you can get blowup in when "Job" is to
 be solved for, you get a blowup in factor sizes

- tree organization: "above" vs. "at" and below

- in HMMs, traditionally a slightly diff organization
 ("forward" includes "at"
 \& "above")

 which leads to \text{travis-graph-organized dynamic program}

 <use square nodes, to avoid confusing \text{a graphical model}>

- can also be used to compute Viterbi paths
(can we use inbuilt display in order to show on the board?)

I: graphical model for variables relevant to a student taking a particular student.

What affects G, a student's grade in the course?
In this model, core grade is affected by the student's intelligence; the difficulty of the course.

Difficulty comes from how coherent the lecturer is, but if we know how difficult the course is, knowing G, coherence doesn't give us any extra info about the grade.

Grades affect how good your letter of recommendation is:
Your letter of rec. affects what job you get.
Your grade + your job affect your happiness.

clique q II.

4: 15% (A) is false: if I knew your G, I have some info about your SAT score, a more accurate guess @ your SAT score than I did before.

12: 46% (B) is true: if I knew your intelligence, my accuracy @ guessing your grade isn't going to change if I'm also told your SAT score.

2: 8% (C) is false, since I know you've got a good job.

8: 31% (so D is false)

1. (A)+(B): children are not indep, but are cond indep given parent.
2. (C) parents are not indep given children.
Correct answer to question 3: false.
\[P(D) = \sum_c P(D | C = c) P(C = c) \]

For question 4, we have:
\[P(Y, Z) = \sum_{X} P(Y, Z | X) \text{ where } X \text{ is a variable not of interest.} \]

Exercise:
To see how structure affects our computations, let's try to compute:
\[P(J) = \sum_{C, D, I, \ldots, H} P(C, D, I, \ldots, H) \text{ for all except } J \]

Correct answer to question 5: a leaf below J.

14% said disappear
4% said become subscript
7% said remains an argument

If we don't know happiness, it doesn't matter. If we guess, we eliminate happiness...

Correct answer to question 6: an orphan with 1 child.

2% disappears
24% said yes
16% said remains an arg. (probably wasn't made clear to me) - cross off coherence.
in lecture, I skipped the elimination of D, which, naturally, gives you a different result when you eliminate F. But you still get a multi-argument m.

Can similarly break off orphan D

\[\sum_{m} \sum_{\text{all \omega} = \text{a}, \text{b}, \text{c}, \text{d}} \frac{m}{(\omega, D)} \frac{1}{P(D, \omega I)} \sum_{\text{all \ I}} P(G, D, \omega I) \]

\[= \sum_{m} \sum_{\text{all \omega} = \text{a}, \text{b}, \text{c}, \text{d}} \frac{m}{(\omega, D)} \frac{1}{P(D, \omega I)} \sum_{\text{all \ I}} P(G, D, \omega I) \]

\[\text{mathematically, equals } P(G, I), \text{ given by table.} \]
In an HMM looks like this:

What about work? demand?

What is $P(C)$?

So working upwards is great!

But, wait. This doesn't look like what we studied yesterday. It seems like we are marginally over the observed.

Make sure X, Y, Z are observed.

Eliminate root: yuck...

$$\sum_A P(w|A)P(b|A)P(a)$$

1st eliminate W:

$$\sum_{w} P(w|A)$$

Now eliminate root:

$$\sum_A P(b|A)P(a)$$

now eliminate root:

$$m_a(b)$$

now eliminate leaf X: $\sum_{x} P(x|b)$$

now eliminate chain root B:

$$\sum_{b} P(c|b) m_a(b)$$

Eliminate leaf X, leaf Y, leaf Z.

$$m_b(c) \quad m_b(c) = \sum_{b} P(c|b) m_a(b)$$

$$P(A, B)$$

(Continue this)
So, let's talk about computing $P(B, \hat{Z}, \hat{X}, X, Y, Y, Y, Z)$.

Bottom up:

Eliminate the "leaf" C

$$
\sum_{C} P(c|B) P(z|c) P(Z|c) \\
= \sum_{C} P(c|B) P(z|c) \frac{m_c(B, Z|z)}{m_c(B, Z|z)} \\
= \sum_{C} P(c|B) \frac{m_c(B, Z|z)}{m_c(B, Z|z)}
$$

Eliminate the root C

Now we have to do the root

$$
\sum_A P(B|A) P(X|x|A) P(A) \\
= \sum_A P(B|A) \frac{m_A(B, X|x)}{m_A(B, X|x)}
$$

and we have one more leaf

$P(Y|y|B)$

prob the 2nd emission is Y given 2nd state is B.

\[\text{which we can write as} \]
\[\beta_2(b) = \hat{P}(Z|y|B, b) \]

\[\text{almost from:} \]
\[P(\text{2nd state is } B; \text{1st emission is } X), \]

\[\hat{\alpha}_2(b) = \hat{P}(X=x, B=b) \]

\[\text{which we can write as a} \]
\[\"Sridharan \alpha\" \]

Sridharan's α_2

Sridharan's β_2

Combines the α_2, the β_2, \hat{P} of transitioning from B to C given B, prob of B path Y given B, and you get the prob of the whole.