Machine Learning for Data Science (CS4786) Lecture 19

Graphical Models

April 16, 2015

Course Webpage:

http://www.cs.cornell.edu/Courses/cs4786/2015sp/

VARIABLE ELIMINATION: EXAMPLES

VARIABLE ELIMINATION: BAYESIAN NETWORK

Initialize List with conditional and marginal probability distributions

Pick an order of elimination *I* for remaining variables

For each $X_i \in I$

Find distributions in List containing X_i , remove them from List and add them to listⁱ

Define new distribution

$$m_{X_i} = \sum_{X_i} \prod_{j} \operatorname{list}_{j}^{i}[X_i]$$

Instert m_{X_i} into List

End

Return List

VARIABLE ELIMINATION: ORDER MATTERS

VARIABLE ELIMINATION: EXAMPLES

Message Passing

- Often we need more than one marginal computation
- Over variables we need marginals for, there are many common distributions/potentials in the list
- Can we exploit structure and compute these intermediate terms that can be reused?

MESSAGE PASSING EXAMPLE

BELIEF PROPAGATION

- Think of variables as nodes in a network, each node is allowed to chat with its neighbors
- Adjacent nodes receive messages from neighbors telling the node how to update its belief
- Each node in turn sends messages to its neighbors: based on observation, previous received messages, marginal and conditional distributions telling the other how to update beliefs
- (Hopefully) All the nodes converge on their beliefs

BELIEF PROPAGATION

- To revery observation $X_j = x_j$ define $E_{X_j}(x) = \mathbf{1}\{x = x_j\}$, for unobserved variables set $E_{X_j}(x) = 1$
- 2 At round 0, all messages between nodes are 1

BELIEF PROPAGATION

For any node X_i

Incoming message to node from children:

$$\lambda(x) = E_{X_i}(x) \prod_{j \in \text{children}(X_i)} \lambda_{X_j}(x)$$

• Incoming message from Parents:

$$\pi(x) = \sum_{u} P(X_i = x | \text{Parent}(X_i) = u) \prod_{k \in \text{Parent}(X_i)} \pi_{X_i}(u_k)$$

• Outgoing message to Parent X_i :

$$\lambda_{X_i}(u_i) \propto \sum_{x} \lambda(x) \sum_{u \sim u_i} P(X_i = x | \text{Parent}(X_i) = u) \prod_{k \neq i} \pi_{X_i}(u_k)$$

• Outgoing message to child X_i :

$$\pi_{X_j}(x) \propto \pi(x) E_{X_i}(x) \prod_{k \neq j} \lambda_{Y_j}(x)$$

Belief Propagation on Trees

INFERENCE VIA SAMPLING

- Sample from the generative model
- Calculate empirical marginals
- Might require many samples to be accurate