Probabilistic Modelling, MLE Vs MAP Vs Bayesian, Latent Variables

Mar 19, 2015

Course Webpage:
http://www.cs.cornell.edu/Courses/cs4786/2015sp/
For *arbitrary* set of points, we can have either
- Scale invariance
- Consistency

OR

- Universality/Richness
For arbitrary set of points, we can have either
- Scale invariance
- Consistency

OR

- Universality/Richness

Assume structure or prior information on the set of points
For arbitrary set of points, we can have either
- Scale invariance
- Consistency

OR
- Universality/Richness

Assume structure or prior information on the set of points

Assume we have set \(\Theta \) of possible models and data is generated from one of these \(\theta \in \Theta \):

\[
(x_t, c_t) \sim P_{\theta}((x_1, c_1), \ldots, (x_{t-1}, c_{t-1}))
\]
Apple doesn’t fall far from its tree model:

- Each θ consists of position of initial trees $\mu_1, \ldots, \mu_K \in \mathbb{R}^2$ and mixture distribution $\pi = (\pi_1, \ldots, \pi_K)$ where π_i is the probability with which we get tree of fruit i
- At time t we generate a new tree as follows:
 - $c_t \sim \pi$
 - $\text{Parent}_t \sim$ pick a parent tree uniformly from one of the c_t trees
 - $x_t \sim N(x_{\text{Parent}_t}, \Sigma)$
Apple doesn’t fall far from its tree model:
- Each θ consists of position of initial trees $\mu_1, \ldots, \mu_K \in \mathbb{R}^2$ and mixture distribution $\pi = (\pi_1, \ldots, \pi_K)$ where π_i is the probability with which we get tree of fruit i
- At time t we generate a new tree as follows:
 - $c_t \sim \pi$
 - $\text{Parent}_t \sim \text{pick a parent tree uniformly from one of the } c_t \text{ trees}$
 - $x_t \sim N(x_{\text{Parent}_t}, \Sigma)$

Gaussian Mixture Model
- Each θ consists of mixture distribution $\pi = (\pi_1, \ldots, \pi_K)$, means $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$ and covariance matrices $\Sigma_1, \ldots, \Sigma_K$
- At time t we generate a new tree as follows:
 $$c_t \sim \pi, \quad x_t \sim N(\mu_{c_t}, \Sigma_{c_t})$$
More generally:

- Θ consists of set of possible parameters

- We have a distribution P_θ over the data induced by each $\theta \in \Theta$

- Data is generated by one of the $\theta \in \Theta$

- Learning: Estimate value or distribution for $\theta^* \in \Theta$ given data
Pick $\theta \in \Theta$ that maximizes probability of observation
Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:
- One of the models in Θ is the correct one
Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:
- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data
Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:
- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data
- Equivalently pick the maximum likelihood estimator,

$$\theta_{MLE} = \arg\max_{\theta \in \Theta} \log P_\theta(x_1, \ldots, x_n)$$
Pick $\theta \in \Theta$ that maximizes probability of observation

Reasoning:
- One of the models in Θ is the correct one
- Given data we pick the one that best explains the observed data
- Equivalently pick the maximum likelihood estimator,

$$\theta_{MLE} = \underset{\theta \in \Theta}{\text{argmax}} \log P_\theta(x_1, \ldots, x_n)$$

Often referred to as frequentist view
Pick $\theta \in \Theta$ that is most likely given data
Pick $\theta \in \Theta$ that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
Maximum A Posteriori

Pick $\theta \in \Theta$ that is most likely given data

Reasoning:

- Models are abstractions that capture our belief
- We update our belief based on observed data
Maximum A Posteriori

Pick $\theta \in \Theta$ that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
Pick $\theta \in \Theta$ that is most likely given data.

Reasoning:

- Models are abstractions that capture our belief.
- We update our belief based on observed data.
- Given data we pick the model that we believe the most.
- Pick θ that maximizes $\log P(\theta|x_1, \ldots, x_n)$.
Maximum A Posteriori

Pick \(\theta \in \Theta \) that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
- Pick \(\theta \) that maximizes \(\log P(\theta|x_1, \ldots, x_n) \)

I want to say : Often referred to as Bayesian view
Pick $\theta \in \Theta$ that is most likely given data

Reasoning:
- Models are abstractions that capture our belief
- We update our belief based on observed data
- Given data we pick the model that we believe the most
- Pick θ that maximizes $\log P(\theta | x_1, \ldots, x_n)$

I want to say: Often referred to as Bayesian view

There are Bayesian and there Bayesians
Pick $\theta \in \Theta$ that is most likely given data
Maximum a Posteriori

Pick $\theta \in \Theta$ that is most likely given data

Maximize a posteriori probability of model given data

$$\theta_{MAP} = \arg\max_{\theta \in \Theta} P(\theta|x_1, \ldots, x_n)$$

$$= \arg\max_{\theta \in \Theta} \frac{P(x_1, \ldots, x_n|\theta)P(\theta)}{\sum_{\theta \in \Theta} P(x_1, \ldots, x_n|\theta)P(\theta)}$$

$$= \arg\max_{\theta \in \Theta} \frac{P(x_1, \ldots, x_n|\theta)P(\theta)}{P(x_1, \ldots, x_n)}$$

$$= \arg\max_{\theta \in \Theta} \frac{P(x_1, \ldots, x_n|\theta)P(\theta)}{P(x_1, \ldots, x_n)}$$

$$= \arg\max_{\theta \in \Theta} \log P(x_1, \ldots, x_n|\theta) + \log P(\theta)$$
Example: Gaussian Mixture Model

MLE: $\theta = (\mu_1, \ldots, \mu_K), \pi$

$$P_\theta(x_1, \ldots, x_n) = \prod_{t=1}^{n} \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2 * 3.1415)^2 |\Sigma_i|}} \exp \left(- (x_t - \mu_i)^\top \Sigma_i (x_t - \mu_i) \right) \right)$$
Example: Gaussian Mixture Model

MLE: \(\theta = (\mu_1, \ldots, \mu_K), \pi \)

\[
P_\theta(x_1, \ldots, x_n) = \prod_{t=1}^{n} \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2 \times 3.1415)^2 |\Sigma_i|}} \exp \left(- (x_t - \mu_i)^\top \Sigma_i (x_t - \mu_i) \right) \right)
\]

MAP: with prior \(\mu_i \sim N(0, \sigma I) \) and uniform prior on \(\pi \)

\[
P(\theta|x_1,\ldots,n) = \prod_{t=1}^{n} \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2 \times 3.1415)^2 |\Sigma_i|}} \exp \left(- (x_t - \mu_i)^\top \Sigma_i (x_t - \mu_i) \right) \right) \times \prod_{i=1}^{K} \frac{1}{\sqrt{(4 \times 3.1415)^2}} \exp \left(- \|\mu_i\|^2 \right)
\]
What after we pick $\theta^* \in \Theta$?

- θ^* provides us a model/distribution from which data is generated
θ* provides us a model/distribution from which data is generated

In clustering for example, we can compute $P_{θ*}(c_t|x_t)$
What after we pick \(\theta^* \in \Theta \)?

- \(\theta^* \) provides us a model/distribution from which data is generated.

- In clustering for example, we can compute \(P_{\theta^*}(c_t|x_t) \).

- Hence we could assign to \(x_t \) cluster id \(c_t \) that has the largest probability. Inference step.
What after we pick $\theta^* \in \Theta$?

- θ^* provides us a model/distribution from which data is generated.

- In clustering for example, we can compute $P_{\theta^*}(c_t|x_t)$.

- Hence we could assign to x_t cluster id c_t that has the largest probability. Inference step.

- *There are rough arguments*
Don’t pick any $\theta^* \in \Theta$
Don’t pick any $\theta^* \in \Theta$

- Model is simply an abstraction
Don’t pick any $\theta^* \in \Theta$

- Model is simply an abstraction
- We have a posteriori distribution over models, why pick one if in the end of the day we only want cluster assignments
The Bayesian Choice

Don’t pick any $\theta^* \in \Theta$

- Model is simply an abstraction
- We have a prosteriori distribution over models, why pick one if in the end of the day we only want cluster assignments
- For each point find probability of cluster assignment we get by integrating over a posteriori probability of parameters θ
Don’t pick any $\theta^* \in \Theta$

- Model is simply an abstraction

- We have a posteriori distribution over models, why pick one if in the end of the day we only want cluster assignments

- For each point find probability of cluster assignment we get by integrating over a posteriori probability of parameters θ

- We will come back to this later …
We only observe locations of trees, we don’t know which tree they are, ie. \(c_1, \ldots, c_n \) are not observable.
We only observe locations of trees, we don’t know which tree they are, ie. c_1, \ldots, c_n are not observable.

Unobserved variables are referred to as latent variables.
We only observe locations of trees, we don’t know which tree they are, ie. \(c_1, \ldots, c_n \) are not observable.

Unobserved variables are referred to as latent variables.

We only pick \(\theta_{MLE} \) or \(\theta_{MAP} \) that maximizes likelihood or a posteriori probability given observation.
Latent Variables

- We only observe locations of trees, we don’t know which tree they are, ie. \(c_1, \ldots, c_n \) are not observable.

- Unobserved variables are referred to as latent variables.

- We only pick \(\theta_{MLE} \) or \(\theta_{MAP} \) that maximizes likelihood or a posteriori probability given observation.

So why bother with the latent variables?
Let us consider the one dimensional case,

\[\log P_\theta(x_1,...,n) = \sum_{t=1}^{n} \log \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2 \times 3.1415 \sigma_i)^2}} \exp \left(-\left(x_t - \mu_i \right)^2 / \sigma_i^2 \right) \right) \]
Let us consider the one dimensional case,

\[
\log P_\theta(x_1, ..., n) = \sum_{t=1}^{n} \log \left(\sum_{i=1}^{K} \pi_i \frac{1}{\sqrt{(2 \times 3.1415\sigma_i)^2}} \exp \left(-\frac{(x_t - \mu_i)^2}{\sigma_i^2} \right) \right)
\]

Now consider the partial derivative w.r.t. \(\mu_1 \), we have:

\[
\frac{\partial \log P_\theta(x_1, ..., n)}{\partial \mu_1} = \sum_{t=1}^{n} \frac{\pi_1}{\sigma_1} \exp \left(-\frac{(x_t - \mu_1)^2}{\sigma_1^2} \right) \frac{1}{\sum_{i=1}^{K} \frac{\pi_i}{\sigma_i} \exp \left(-\frac{(x_t - \mu_i)^2}{\sigma_i^2} \right)}
\]

Even given all other parameters, optimizing w.r.t. just \(\mu_1 \) is hard!
Say by some magic you knew cluster assignments, then

\[
\log P_{\theta}(\{(x_t, c_t)\}_{t=1}^n) = \sum_{t=1}^n \log \left(\frac{\pi_{c_t}}{\sqrt{(2 \times 3.1415 \sigma_{c_t})^2}} \exp \left(-\frac{(x_t - \mu_{c_t})^2}{2\sigma_{c_t}^2} \right) \right) \\
= \sum_{t=1}^n \left(\log(\pi_{c_t}) - \log(2 \times 3.1415 \times \sigma_{c_t}) - \frac{(x_t - \mu_{c_t})^2}{2\sigma_{c_t}^2} \right)
\]
MLE FOR GMM

Say by some magic you knew cluster assignments, then

\[
\log P_\theta((x_t, c_t), \ldots, n) = \sum_{t=1}^{n} \log \left(\frac{\pi_{c_t}}{\sqrt{2 \times 3.1415 \sigma_{c_t}^2}} \exp \left(-\frac{(x_t - \mu_{c_t})^2}{2\sigma_{c_t}^2} \right) \right)
\]

\[
= \sum_{t=1}^{n} \left(\log(\pi_{c_t}) - \log(2 \times 3.1415 \times \sigma_{c_t}) - \frac{(x_t - \mu_{c_t})^2}{2\sigma_{c_t}^2} \right)
\]

Now consider the partial derivative w.r.t. \(\mu_i \), we have:

\[
\frac{\partial \log P_\theta((x_t, c_t), \ldots, n)}{\partial \mu_i} = -\frac{\partial}{\partial \mu_i} \sum_{t=1}^{n} \left(\frac{1}{2\sigma_{c_t}^2} (x_t - \mu_{c_t})^2 \right)
\]

\[
= -\frac{1}{2\sigma_i^2} \frac{\partial}{\partial \mu_i} \sum_{t: c_t = i} (x_t - \mu_i)^2
\]

\[
= \frac{1}{\sigma_i^2} \sum_{t: c_t = i} (x_t - \mu_i) \mu_i
\]
Optimize for σ_i and π, what do you get?
Say we are interested in either MLE or MAP estimators

Latent variables can help, but we have a chicken and egg problem

Given all variables maximizing likelihood/a posteriori is easy

Given model parameter, optimizing distribution over the latent variables is easy