1 Differential Privacy

Differential Privacy is a strong notion of privacy for an algorithm that ensures that we cannot detect if one entry of a dataset is replaced. Specifically, let A be a randomized algorithm that takes as input a sample $S = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ and outputs $A(S)$ in some arbitrary outcome space.

Definition 1. We say that A is (ϵ, δ) differentially private if for any sample S and sample S' that differ on at most one data point, and for any set C over the space of outcomes,

$$P(A(S) \in C) \leq e^\epsilon P(A(S') \in C) + \delta$$

Note that since S and S' differ on at most one data point, the above definition tells us that both

$$P(A(S) \in C) \leq e^\epsilon P(A(S') \in C) + \delta$$

and that

$$P(A(S') \in C) \leq e^\epsilon P(A(S) \in C) + \delta$$

Specifically, as ϵ and δ are taken to be very small this says $P(A(S) \in C)$ and $P(A(S') \in C)$ are very close and so we can't distinguish if we have run our method on S or S'.

2 The Laplace Mechanism

Say we want a differentially private version of a real valued function f on a given sample S. One way to obtain such a version is to first evaluate f on a given sample S then add noise to it to guarantee differential privacy. Specifically, say we want a differentially private version of function f. In this case, let

$$M = \max_{S, S' \text{ s.t. } S', S \text{ vary on one point}} f(S) - f(S')$$

Now we could set

$$A(S) = f(S) + \frac{M}{\epsilon} X$$

where X is drawn from the Laplace distribution $\text{Laplace}(0, 1)$. That is, distribution with density function

$$p(X) = \frac{1}{2}e^{-|X|}$$

Lemma 1. Let

$$A(S) = f(S) + \frac{M}{\epsilon} X$$

where $X \sim \text{Laplace}(0, 1)$ and $M = \max_{S, S' \text{ s.t. } S', S \text{ vary on one point}} f(S) - f(S')$. The algorithm A is $(\epsilon, 0)$ differentially private.
Proof. Since $A(S) = f(S) + \frac{M}{\epsilon} X$, we have that $A(S) \sim \text{Laplace}(f(S), \frac{M}{\epsilon})$. Hence, we have that the probability density function of $A(S)$ is given by

$$p_{A(S)}(x) = \frac{e}{2M}e^{-\frac{|x-f(S)|}{M}}$$

Similarly, the density function for $A(S')$ for any S' that differs from S on at most one point if given by

$$p_{A(S')}(x) = \frac{e}{2M}e^{-\frac{|x-f(S')|}{M}}$$

Hence,

$$\frac{p_{A(S)}(x)}{p_{A(S')}(x)} = \frac{e^{-\frac{|x-f(S)|}{2M}}}{e^{-\frac{|x-f(S')|}{2M}}} = e^{\frac{M}{2M}(|x-f(S')|-|x-f(S)|)} \leq e^{\frac{M}{2M} |f(S)-f(S')|} \leq e^\epsilon$$

Next note that for any set C, using the above,

$$P(A(S) \in C) = \int_C p_{A(S)}(x)dx \leq e^\epsilon \int_C p_{A(S')}(x)dx = e^\epsilon P(A(S') \in C)$$

Thus we have proved that the algorithm is $(\epsilon, 0)$ differentially private. \hfill \Box

An example application is when $S = \{x_1, \ldots, x_n\}$ where each $x_t \in [-1, 1]$ and $f(S) = \frac{1}{n} \sum_{t=1}^n x_t$. In this case note that if $S' = \{x_1, \ldots, x_{i-1}, x'_i, x_{i+1}, \ldots, x_n\}$, then,

$$f(S) - f(S') = \frac{1}{n} (x_i - x'_i) \leq \frac{2}{n}$$

Hence $M \leq \frac{2}{n}$ and so in this case, to make mean $\epsilon, 0$ differentially private, we need to add Laplace noise of $\text{Laplace}(0, \frac{2}{\epsilon n})$.

2.1 The Multidimensional Laplace Mechanism

Say function F now maps to a K-dimensional vector. The Laplace mechanism then easily extends to this multi-dimensional setting as well. In this case, define

$$B = \max_{S,S' \text{ s.t. } S',S \text{ vary on one point}} \|F(S) - F(S')\|_1$$

Lemma 2. Let

$$A(S) = F(S) + \frac{B}{\epsilon} (X_1, \ldots, X_K)$$

where $X_1, \ldots, X_K \sim \text{Laplace}(0, 1)$ are K Laplace distributed random variables, and $B = \max_{S,S' \text{ s.t. } S',S \text{ vary on one point}} \|F(S) - F(S')\|_1$. The algorithm A is $(\epsilon, 0)$ differentially private.

Proof. Since $A(S) = F(S) + \frac{B}{\epsilon} (X_1, \ldots, X_K)$, we have that for every $i \in [K]$, $A(S)[i] \sim \text{Laplace}(F(S)[i], \frac{B}{\epsilon})$. Hence, we have that the probability density function of $A(S)[i]$ is given by

$$p_{A(S)}(x) = \left(\frac{e}{2B}\right)^K \prod_{i=1}^K e^{-\frac{x[i] - F(S)[i]}{B}}$$

2
Similarly, the density function for \(A(S') \) for any \(S' \) that differs from \(S \) on at most one point if given by

\[
p_{A(S')} (x) = \left(\frac{\epsilon}{2B} \right)^K \prod_{i=1}^{K} e^{- \frac{|x[i] - F(S')[i]|}{B}}
\]

Hence,

\[
p_{A(S)} (x) \frac{p_{A(S')}(x)}{p_{A(S')}(x)} = \prod_{i=1}^{K} e^{\frac{\epsilon}{2B}(|x[i] - F(S')[i]|)} \leq \prod_{i=1}^{K} e^{\frac{\epsilon}{2B}(|F(S)[i] - F(S')[i]|)} = e^{\frac{\epsilon}{2B} \|F(S) - F(S')\|_1} \leq e^\epsilon
\]

Next note that for any set \(C \), using the above,

\[
P(A(S) \in C) = \int_C p_{A(S)} (x) dx \leq e^\epsilon \int_C p_{A(S')} (x) dx = e^\epsilon P(A(S') \in C)
\]

Thus we have proved that the algorithm is \((\epsilon, 0)\) differentially private.

An immediate question that one might have is how bad does the Laplace mechanism distort our outcome. Specifically, recall that we want out procedure to output \(F(S) \) in a differentially private fashion. So we would hope that our algorithm \(A(S) \) returns a vector that is close to \(F(S) \). The following lemma provides such a bound.

Lemma 3. For any \(F \), the differentially private algorithm \(A \) obtained using Laplace mechanism satisfies the following bound

\[
P\left(\|F(S) - A(S)\|_\infty \geq \log \left(\frac{K}{\delta} \right) \frac{B}{\epsilon} \right) \leq \delta
\]

where \(B = \max_{S, S'} \text{ s.t. } S, S' \text{ vary on one point } \|F(S) - F(S')\|_1 \)

Proof. Let \((X_1, \ldots, X_K)\) be \(K \) random variables each drawn from Laplace distribution. In this case note that,

\[
P\left(\|F(S) - A(S)\|_\infty \geq \log \left(\frac{K}{\delta} \right) \frac{B}{\epsilon} \right) = P\left(\max_{i \in [K]} \|X[i]\| \geq \log \left(\frac{K}{\delta} \right) \frac{B}{\epsilon} \right)
\]

\[
\leq KP\left(\|X[i]\| \geq \log \left(\frac{K}{\delta} \right) \frac{B}{\epsilon} \right)
\]

\[
\leq K \frac{\delta}{K} = \delta
\]

3 Some Properties

The first important property of differential privacy is that post processing preserves privacy. Say algorithm \(A \) is \((\epsilon, \delta)\) differentially private and say we apply a function \(g \) on outcome of algorithm \(A \) and output \(g(A(S)) \). Such post processing preserves privacy.
Lemma 4. Let A be an (ϵ, δ) differentially private algorithm. Let g be any function on the space of outcomes of the algorithm A. Then, the algorithm B that computes $B(S) = g(A(S))$ is also (ϵ, δ) differentially private.

Proof. Consider any set C on the space of outcomes of algorithm B. Define the set $D = \{d : g(d) \in C\}$ that is, D is the set of entries such that g applied to an element in D returns an outcome in set C. Note that,

$$P(B(S) \in C) = P(g(A(S)) \in C) = P(A(S) \in D)$$

Now using the differential privacy of A, we have

$$P(B(S) \in C) = P(A(S) \in D) \leq e^\epsilon P(A(S') \in D) + \delta$$

But if $A(S') \in D$, then $g(A(S')) \in C$ by definition of set D and so

$$P(B(S) \in C) \leq e^\epsilon P(A(S') \in D) + \delta = e^\epsilon P(g(A(S')) \in C) + \delta = e^\epsilon P(B(S') \in C) + \delta$$

Thus we can conclude that B is ϵ, δ differentially private.

Lemma 5. Let A_1 and A_2 be two ϵ_1 and ϵ_2 differentially private mechanisms. Then, $A(S) = (A_1(S), A_2(S))$ is an $\epsilon_1 + \epsilon_2$ differentially private mechanism.

Proof. Below we do the proof assuming the outcome of the differentially private mechanism has a density function. (for the discrete setting the proof can also be easily extended and can also be extended more generally)

$$\frac{p_{A(S)}(c_1, c_2)}{p_{A(S')}(c_1, c_2)} = \frac{p_{A_1}(c_1) \times p_{A_2}(c_2)}{p_{A_1}(c_1) \times p_{A_2}(c_2)}$$

$$= \frac{p_{A_1}(c_1)}{p_{A_1}(c_1')} \times \frac{p_{A_2}(c_2)}{p_{A_2}(c_2)}$$

$$\leq e^{\epsilon_1} \times e^{\epsilon_2} = e^{\epsilon_1 + \epsilon_2}$$

4 Gaussian Mechanism

Lemma 6. Let

$$A(S) = F(S) + \frac{cB}{\epsilon} (X_1, \ldots, X_K)$$

where $X_1, \ldots, X_K \sim \text{Normal}(0, 1)$ are K standard normal distributed random variables. and $B = \max_{S, S' \text{ s.t. } S', S \text{ vary on one point}} \|F(S) - F(S')\|_2$. and the constant $c = \sqrt{2\log(1.25/\delta)}$. Then the algorithm A is (ϵ, δ) differentially private.
Proof. For now say we use variance σ, we will later prove $\sigma = cB/\epsilon$. Note that,

$$\frac{p_A(S)(x)}{p_A(S')(x)} = \prod_{i=1}^{K} e^{-\frac{(x[i]-F(S)[i])^2}{2\sigma^2}} = \prod_{i=1}^{K} e^{\frac{1}{2\sigma^2}((x[i]-F(S')[i])^2-(x[i]-F(S)[i])^2)}$$

$$= e^{\frac{1}{2\sigma^2}((\|x-F(S')\|_2^2-\|x-F(S)\|_2^2)}$$

$$= e^{\frac{1}{2\sigma^2}(\|x-F(S)\|_2^2+\|F(S)-F(S')\|_2^2+2(x-F(S))^\top (F(S)-F(S'))-\|x-F(S)\|_2^2)}$$

$$= e^{\frac{1}{2\sigma^2}(\|F(S)-F(S')\|_2^2+2(x-F(S))^\top (F(S)-F(S')))}$$

$$\leq e^{\frac{1}{2\sigma^2}(B^2+2\|x-F(S)\|_2B)}$$

Now note that $\frac{1}{2\sigma^2} (B^2 + 2\|x - F(S)\|_2B) \leq \epsilon$ whenever,

$$\|x - F(S)\|_2 \leq \frac{\sigma^2 \epsilon}{B} - \frac{B}{2}$$

On the other hand, note that $P_{A}(\|x - F(S)\|_2 > \frac{\sigma^2 \epsilon}{B} - \frac{B}{2})$ can be bounded using the fact that x is gaussian distributed with mean $F(S)$. Specifically for the setting of $\sigma = cB/\epsilon$ we can conclude that

$$P_{A}(\|x - F(S)\|_2 > \frac{\sigma^2 \epsilon}{B} - \frac{B}{2}) \leq \delta$$

Thus we conclude that the mechanism is (ϵ, δ) differentially private. \qed