
Mathematical Foundations of Machine Learning (CS 4783/5783)

Lecture 21: Differential Privacy

1 Differential Privacy

Differential Privacy is a strong notion of privacy for an algorithm that ensures that we cannot
detect if one entry of a dataset is replaced. Specifically, let A be a randomized algorithm that takes
as input a sample S = {(x1, y1), . . . , (xn, yn)} and outputs A(S) in some arbitrary outcome space.

Definition 1. We say that A is (ε, δ) differentially private if for any sample S and sample S′ that
differ on at most one data point, and for any set C over the space of outcomes,

P (A(S) ∈ C) ≤ eεP (A(S′) ∈ C) + δ

Note that since S and S′ differ on at most one data point, the above definition tells us that
both

P (A(S) ∈ C) ≤ eεP (A(S′) ∈ C) + δ

and that
P (A(S′) ∈ C) ≤ eεP (A(S) ∈ C) + δ

Specifically, as ε and δ are taken to be very small this says P (A(S) ∈ C) and P (A(S′) ∈ C) are
very close and so we cant distinguish if we have run our method on S or S′.

2 The Laplace Mechanism

Say we want a differentially private version of a real valued function f on a given sample S. One
way to obtain such a version is to first evaluate f on a given sample S then add noise to it to
guarantee differential privacy. Specifically, say we want a differentially private version of function
f . In this case, let

M = max
S,S′ s.t. S′,S vary on one point

f(S)− f(S′)

Now we could set

A(S) = f(S) +
M

ε
X

where X is drawn from the Laplace distribution Laplace(0, 1). That is, distribution with density
function

p(X) =
1

2
e−|X|

Lemma 1. Let

A(S) = f(S) +
M

ε
X

where X ∼ Laplace(0, 1) and M = maxS,S′ s.t. S′,S vary on one point f(S) − f(S′). The algorithm A
is (ε, 0) differentially private.
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Proof. Since A(S) = f(S) + M
ε X, we have that A(S) ∼ Laplace(f(S), Mε ). Hence, we have that

the probability density function of A(S) is given by

pA(S)(x) =
ε

2M
e−

ε|x−f(S)|
M

Similarly, the density function for A(S′) for any S′ that differs from S on at most one point if given
by

pA(S′)(x) =
ε

2M
e−

ε|x−f(S′)|
M

Hence,

pA(S)(x)

pA(S′)(x)
=
e−

ε|x−f(S)|
2M

e−
ε|x−f(S′)|

2M

= e
ε

2M
(|x−f(S′)|−|x−f(S)|) ≤ e

ε
M
|f(S)−f(S′)| ≤ eε

Next note that for any set C, using the above,

P (A(S) ∈ C) =

∫
C
pA(S)(x)dx ≤ eε

∫
C
pA(S′)(x)dx = eεP (A(S′) ∈ C)

Thus we have proved that the algorithm is (ε, 0) differentially private.

An example application is when S = {x1, . . . , xn} where each xt ∈ [−1, 1] and f(S) = 1
n

∑n
t=1 xt.

In this case note that if S′ = {x1, . . . , xi−1, x′i, xi+1, . . . , xn}, then,

f(S)− f(S′) =
1

n
(xi − x′i) ≤

2

n

Hence M ≤ 2
n and so in this case, to make mean ε, 0 differentially private, we need to add Laplace

noise of Laplace(0, 2
εn)

3 Some Properties

The first important property of differential privacy is that post processing preserves privacy. Say
algorithm A is (ε, δ) differentially private and say we apply a function g on outcome of algorithm
A and output g(A(S)). Such post processing preserves privacy.

Lemma 2. Let A be an (ε, δ) differentially private algorithm. Let g be any function on the space of
outcomes of the algorithm A. Then, the algorithm B that computes B(S) = g(A(S)) is also (ε, δ)
differentially private.

Proof. Consider any set C on the space of outcomes of algorithm B. Define the set

D = {d : g(d) ∈ C}

that is D is the set of entries such that g applied to an element in D returns an outcome in set C.
Note that,

P (B(S) ∈ C) = P (g(A(S)) ∈ C) = P (A(S) ∈ D)

Now using the differential privacy of A, we have

P (B(S) ∈ C) = P (A(S) ∈ D) ≤ eεP (A(S′) ∈ D) + δ
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But if A(S′) ∈ D, then g(A(S′)) ∈ C by definition of set D and so

P (B(S) ∈ C) ≤ eεP (A(S′) ∈ D) + δ = eεP (g(A(S′)) ∈ C) + δ = eεP (B(S′) ∈ C) + δ

Thus we can conclude that B is ε, δ differentially private.
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