
Mathematical Foundations of Machine Learning (CS 4783/5783)

Lecture 15: Stochastic Multi-armed Bandits

1 Lower Confidence Bound (LCB) Algorithm

In the stochastic multi-armed bandit setting we consider the problem where losses `1, . . . , `n are
drawn iid from some fixed distribution D over [−1, 1]K . Let us define Li = E`∼D [`[i]] as the
expected loss of the i’th arm. Let It ∈ [K] be the arm picked by the learning algorithm on round
t. For arm i define

L̂i,t =
1

ni,t

∑
s∈[t]:Is=i

`t[i]

where ni,t = |{s ∈ [t] : Is = i}}. That is the number of times arm i has been picked up to time t.
The algorithm we consider is the following.

For i = 1 to K % First K rounds play each arm once

Pick Ii = i

End For

Set ni,K = 1 for all i

For t = K + 1 to n

Pick It = argmin
i∈[K]

(
LCBi,t−1 := L̂i,t−1 −

√
log(t−1)
ni,t−1

)
Receive loss `t[It]

Update nIt,t = nIt,t + 1

Update L̂i,t for all i

End For

The high level intuition is super simple. First, note that if we consider the expected regret, we
have the expression:

E

[
1

n

n∑
t=1

`t[It]− min
i∈[K]

1

n

n∑
t=1

`t[i]

]
=

1

n

K∑
j=1

E [nj,n]∆j (1)

where we define ∆j = (Lj −mini∈[K] Li) the difference in the expected losses of arm j and optimal
arm. This is clear because for each time we play a sub-optimal arm, we pay in expectation the
sub-optimality gap of the arm. Hence in expectation we get the above expression. This shows that
all we need to do to complete the proof is to bound expected number of times each arm is pulled.

1

Lemma 1. At any time t and any arm j,

P

(
It+1 = j | |ni,t ≥

4 log t

∆2
j

)
≤ 4t−2

Proof. Next note that E
[
L̂i,t

]
= Li since its an unbiased estimate of the loss of arm i. However by

Hoeffding’s inequality, we have that

P
(∣∣∣L̂i,t − Li∣∣∣ > ε

)
≤ 2 exp

(
−2ε2t

)
Plugging in ε =

√
log t
ni,t

we get,

P
(∣∣∣L̂i,t − Li∣∣∣ > ε

)
≤ 2 exp

(
−2t log(t)

nt,i

)
≤ 2 exp (−2t log(t)) ≤ 2t−2

Now let i∗ be an optimal arm. Note that for any arm j, by the bound above, with probability at
least 1− 2/t2,

LCBj,t = L̂t,j −

√
log(t)

nj,t
≥ Lj − 2

√
log(t)

nj,t

Hence if nj,t >
4 log t

∆2
j

we will have that

LCBj,t < Lj −∆j = Li∗

But by Hoeffding bound again with probability at least 1 − 2/t2, Li∗ ≥ LCBi∗,t and so by union

bound, we have that when for any j, when nj,t >
4 log t

∆2
j

, then with probability at least 1− 4/t2,

LCBj,t > LCBi∗,t

Thus we can conclude that when nj,t >
4 log t

∆2
j

for all sub-optimal j’s with high probability the LCB

algorithm will pick the optimal arm instead. More specifically,

P

(
It+1 = j | |ni,t ≥

4 log t

∆2
j

)
≤ 4t−2

Lemma 2. For any arm j, we have that:

E [ni,n] ≤ 4 log(n)

∆2
i

+ 8

2

Proof. Note that:

E [ni,n] = 1 + E

[
n∑

t=K+1

1{It = i}

]

= 1 + E

[
n∑

t=K+1

1{It = i, ni,t <
4 log(t)

∆2
i

}

]
+ E

[
n∑

t=K+1

1{It = i, ni,t ≥
4 log(t)

∆2
i

}

]

= 1 + E

[
n∑

t=K+1

1{It = i, ni,t <
4 log(t)

∆2
i

}

]
+

n∑
t=K+1

P

(
It = i, ni,t ≥

4 log(t)

∆2
i

)

≤ 1 + E

[
n∑

t=K+1

1{It = i, ni,t <
4 log(t)

∆2
i

}

]
+

n∑
t=K+1

P

(
It = i | ni,t ≥

4 log(t)

∆2
i

)

≤ 1 + E

[
n∑

t=K+1

1{It = i, ni,t <
4 log(t)

∆2
i

}

]
+

n∑
t=K+1

4

t2

≤ 8 + E

[
n∑

t=K+1

1{It = i, ni,t <
4 log(n)

∆2
i

}

]

Now say 1{It = i, ni,t <
4 log(n)

∆2
i
} was switched on more than 4 log(n)

∆2
i

number of times, then automat-

ically, we would have a contradiction since ni,t becomes larger than the condition in the indicator.

Hence we can conclude that,
∑n

t=K+1 1{It = i, ni,t <
4 log(n)

∆2
i
} ≤ 4 log(n)

∆2
i

. Hence. we get the overall

bound of

E [ni,n] ≤ 8 +
4 log(n)

∆2
i

Using the above lemma’s result with Eq 1 we conclude the following main theorem.

Theorem 3. For the LCB Algorithm we have the following bound on expected regret:

E

[
1

n

n∑
t=1

`t[It]− min
i∈[K]

1

n

n∑
t=1

`t[i]

]
≤ 1

n

∑
j∈[K]:∆j>0

(
4 log(n)

∆j
+ 8∆j

)

Corollary 4. For any n > K, the expected regret achieved by LCB algorithm is bounded as

E

[
1

n

n∑
t=1

`t[It]− min
i∈[K]

1

n

n∑
t=1

`t[i]

]
≤ 5

√
K log n

n
+

8K

n

Proof Sketch. Basically we use the proof of the previous theorem. Except we divide arms into two

groups. First group consists of arms i for which ∆i <
√

K logn
n and second group consists of arms

3

i for which ∆i ≥
√

K logn
n . Now note that by Eq. 1,

E

[
1

n

n∑
t=1

`t[It]− min
i∈[K]

1

n

n∑
t=1

`t[i]

]

=
1

n

K∑
j=1

E [nj,n]∆j

=
1

n

 ∑
j∈[K]:∆j<

√
K logn

n

E [nj,n]∆j +
∑

j∈[K]:∆j≥
√

K logn
n

E [nj,n]∆j

≤ 1

n

√
K log n

n

∑
j∈[K]:∆j<

√
K logn

n

E [nj,n] +
∑

j∈[K]:∆j≥
√

K logn
n

E [nj,n]∆j

≤ 1

n

√Kn log n+
∑

j∈[K]:∆j≥
√

K logn
n

E [nj,n]∆j

≤
√
K log n

n
+

1

n

∑
j∈[K]:∆j≥

√
K logn

n

E [nj,n]∆j

≤
√
K log n

n
+

1

n

∑
j∈[K]:∆j≥

√
K logn

n

(
4 log(n)

√
n√

K log n
+ 8

)

≤ 5

√
K log n

n
+

8K

n

This proves the theorem.

2 Non-Stochastic Bandit

While one can obtain algorithms for the adaptive adversary that picks losses for arms as they go
based on random choices of the learning algorithms so far, for this section we will restrict ourself
to the so called oblivious adversary. That is, an adversary that picks losses for the K arms and n
rounds in advance but with knowledge of the learning algorithm. Specifically we can think of the
protocol as follows:

4

Adversary picks `1, . . . , `n ∈ [0, 1]K

For t = 1 to n

Learner picks distribution over arms qt ∈ ∆([K])

Learner draws arm It ∼ qt for that round and suffers loss `t[It] (and only `t[It] is revealed
to the learner).

End For

Our goal is to minimize expected regret given as:

E [Regn] = E

[
1

n

n∑
t=1

`t(It)

]
− min
i∈[K]

1

n

n∑
t=1

`t(i)

In the above, note that I have assumed losses are between 0 and 1 rather than −1 and 1 but
we can do this without loss of generality since we can add 1 to every loss and this would leave
regret unaltered. IF we further divide losses by 2 it only scales down regret by a factor of 2. So
this translation can alway be done without affecting our results.

High level idea: On every round, given learners choice qt , the fact that It ∼ qt and the
observation of the number `t(It), we compute a vector ˜̀

t such that

EIt∼qt
[
˜̀
t

]
= `t

Why can we find such a vector? Well think about the following estimate given qt and the fact that
It ∼ qt:

˜̀
t =

`(It)

qt(It)
eIt

This is the importance weighted estimate or the inverse propencity scoring. Why does this work?
Well note that:

EIt∼qt
[
˜̀
t

]
=

K∑
i=1

qt(i)×
`(i)

qt(i)
ei =

K∑
i=1

`(i)ei = `

Hence the vector ˜̀
t which at round t puts on coordinate It the value of observed loss divided by

probability of choosing It is indeed an unbiased estimate of `t. Now given this, we have the following
observation:

E

[
1

n

n∑
t=1

`t(It)

]
− min
i∈[K]

1

n

n∑
t=1

`t(i) = E

[
1

n

n∑
t=1

Ei∼qt [`t(i)]

]
− min
i∈[K]

1

n

n∑
t=1

`t(i)

= E

[
1

n

n∑
t=1

Ei∼qt
[
EIt∼qt

[
˜̀
t(i)
]]]
− min
i∈[K]

1

n

n∑
t=1

EIt∼qt
[
˜̀
t(i)
]

= E

[
1

n

n∑
t=1

Ei∼qt
[
˜̀
t(i)
]]
− min
i∈[K]

1

n
E

[
n∑
t=1

˜̀
t(i)

]

5

Using the fact that expected min is smaller than min expected,

≤ E

[
1

n

n∑
t=1

Ei∼qt
[
˜̀
t(i)
]]
− E

[
min
i∈[K]

1

n

n∑
t=1

˜̀
t(i)

]

= E

[
1

n

n∑
t=1

Ei∼qt
[
˜̀
t(i)
]
− min
i∈[K]

1

n

n∑
t=1

˜̀
t(i)

]
(2)

That is, we have shown that regret of our algorithm is bounded by expected regret of the algorithm
when the losses are the estimates ˜̀

t on each round t, and since ˜̀
t vector can be computed at round

t, w.r.t. the ˜̀
t losses, we are in the full information or non-bandit setting. Hence we can conclude

that all we need is access to a full information online learning algorithm to which we can feed the
estimated losses.

We already know of such an algorithm, the exponential weights algorithm. IF we treat each
arm as a model, then the exponential weights algorithm using the estimated losses would be given
by

qt+1(i) =
e−η

∑t
s=1

˜̀
s(i)∑K

k=1 e
−η

∑t
s=1

˜̀
s(k)

So on every round t, we draw It ∼ qt and at the end of the round knowing `t(It) we compute
˜̀
t = `(It)

qt(It)
eIt and use this to update qt+1. Using the observation in Eq. 2, for this algorithm we

obtain the following theorem.

Theorem 5. For the exponential weights algorithm run using estimates ˜̀
t mentioned above and

using step-size η =

√
2 log(K)
nK , we have the following bound on expected regret:

E [Regn] ≤
√

2K log(K)

n

Proof Sketch. Using the reduction to full information algorithm we have:

E [Regn] = E

[
1

n

n∑
t=1

`t(It)

]
− min
i∈[K]

1

n

n∑
t=1

`t(i)

≤ E

[
1

n

n∑
t=1

Ei∼qt
[
˜̀
t(i)
]
− min
i∈[K]

1

n

n∑
t=1

˜̀
t(i)

]

≤ log(K)

nη
+

1

nη

n∑
t=1

E
[
log
(
Ei∼qt

[
e−η(˜̀

t(i)−Ei∼qt [˜̀
t(i)])

])]
(3)

where the last line I am using the bound we proved at the end of proof of Claim 1 in Lecture 10
where we analyzed exponential weights algorithm. Next we use a consequence of Taylor’s theorem
which I am stating here without proof. Look at Lemma A.4 of the ”Prediction, Learning and
Games” Book by Nicolo Cesa-Bianchi and Gabor Lugosi for a very short proof.

For any 0 mean random variable X, such that X is upper bounded by 1 (lower bound can even by
−∞), we have that

log(E
[
eX
]
) ≤ (e− 2)E

[
X2
]

6

Take the random variable X to be −η(˜̀
t(i)−Ei∼qt

[
˜̀
t(i)
]
) and assume η < 1. In this case, I claim

that X is upper bounded by 1. Why, well note that ˜̀
t(i) ≥ 0 and Ei∼qt

[
˜̀
t(i)
]

= `t(It) ≤ 1. Hence,

−η(˜̀
t(i)− Ei∼qt

[
˜̀
t(i)
]
) ≤ η ≤ 1. Hence, using this, we can conclude that for each t,

log
(
Ei∼qt

[
e−η(˜̀

t(i)−Ei∼qt [˜̀
t(i)])

])
≤ (e− 2)η2Ei∼qt

[(
˜̀
t(i)− Ei∼qt

[
˜̀
t(i)
])2
]

= (e− 2)η2

(
Ei∼qt

[
˜̀
t(i)

2
]
−
(
Ei∼qt

[
˜̀
t(i)
])2
)

≤ (e− 2)η2Ei∼qt
[
˜̀
t(i)

2
]

≤ η2

2
Ei∼qt

[
˜̀
t(i)

2
]

=
η2

2

`t(It)
2

qt(It)

where in the last line we used that definition of ˜̀
t in that on the It coordinate it has `t(It)/qt(It)

and 0 everywhere else. Using this above in Eq. 3 we have:

E [Regn] ≤ log(K)

nη
+

η

2n

n∑
t=1

E
[
`t(It)

2

qt(It)

]

=
log(K)

nη
+

η

2n

n∑
t=1

E

[
K∑
i=1

qt(i)
`t(i)

2

qt(i)

]

=
log(K)

nη
+

η

2n

n∑
t=1

K∑
i=1

`t(i)
2

=
log(K)

nη
+
ηK

2

where in the last line we used the fact that `t(i)
2 ≤ 1. Using η =

√
2 log(K)
nK we get

E [Regn] ≤
√

2K log(K)

n

7

