Mathematical Foundations of Machine Learning(CS 4783/5783)

Lecture 12: Stochastic Gradient Descent

1 Stochastic Optimization

One of the practical advantages of online learning methods is that they are simple and computa-
tionally efficient, and can be used for statistical learning. The stochastic gradient descent algorithm
is closely related to online gradient descent method. In this lecture, we will see how online gradient
descent can be used for statistical learning. The single pass SGD algorithm can be described as
follows. Given sample S = (z1,%1), ..., (Tn,yn) drawn iid from fixed distribution D, the idea is to
simply go over the sample one at a time from ¢ = 1 to n as if it were produced by an adversary
and use the algorithm:
fir1 = £ — V(L (2, 0t))

We will simply use F to be all of R? for this lecture. Throughout we also make the assumption
that for any f:

E (2~ || VU(F; (2,9)) = VLp(F)|; < o (1)

where Lp(f) = E, 4)~p [((f; (7,9))]

2 Convex Lipschitz Problems

The first problem we consider is one where Lp is a convex function and is L-Lipschitz, that is, for
any f,f/,
ILp(f) — Lp(f)| < L|if — ]2

First, using Taylor’s theorem, we can conclude that the above Lipschitz property implies that

IVLp(f)lla < L (2)

For this problem setting we will now show that the online gradient descent or one pass stochastic
gradient algorithm is successful.

Lemma 1. If the gradient variance condition in. FEq. 1 is satisfied and the risk Lp is convex and
L-Lipschitz then, using online gradient descent/one pass SGD we get that for any £*:

1 & |1 — £*||2v/ L2 + o2
n —1 n

Es — Lp(f7)




Proof. From the proof of online gradient descent we have:
oy o L x . n
VU (@ 0)) T (f — £7) < o (16 = €513 = i — £°113) + S IVt (@1, 90))II3
Now note that f; only depends on samples (z1,v1),..., (-1, y:—1) and so

E(z,,40) [Vg(ft; (e, 90)) " (£ — f*)} = By ) [V (z,30))] " (F — £%) = VIp(f) T (£ — £7)

Using this in the above by taking expectation over z;, y; on both sides we get that:
sy o L . . n
Vip(f)'(f —f) < o (1 = £15 = Egap oy [Iir1 = £718]) + 5By gy [IVOE (20, 90) 2]

Now convexity of Lp implies that VLp(£;) " (f; — £*) > Lp(f;) — Lp(f*) and so using this,
Lp(f;) — Lp(f¥)

1 " " n
< 777 (Hft —f ||g - ]E($t,yt) [Hft+1 —f ||%]) + 2E (zt,yt) [va(fb (xtayt))H ]

* * T’
o (e = £715 = B, gy [ — £7[13]) + 2B IV (@0,90)) = VEID(£) + VLp(f)l3]

(If: = 115 — Eay ) [Ifir1 — £5(13])

+ 2B [V (@ 90) = VI E)IE + IV In (83 + 2(VE(, (21, 9) — VIp(E) VLn(E)]

S

1 . « Ul
= 2 (I1f: — £4115 = Bz ) (11101 — £113]) + 3 (E(urg0) [IVEE, (2, 90)) — VLD (£)|3] + VLD (£)]3)

where the last equality holds because the cross term is 0 in expectation. That is,
E (2w [(VOE, (we, 1)) — Lp ()T VLp(fy)] = 0 Hence using the variance bound we can conclude
that:

s oo L . . n
Lp(f;) — Lp(f*) < o (If; = £115 — Egy o) [[Ifr41 — £53]) + 5 (o® + |[VLp(£)[3) (3)
At this point, use the fact that since Lp is L-Lipschitz, |VLp(f)|l2 < L and so,
n
Lp(f;) — Lp(f*) < - (Hft — 3 — By [l — £3])) + 2 (02 + L?)
Taking expectation over entire sample on both sides and averaging over ¢ we conclude that:

S [:L > Lp(f)
t=1

n

* 1 * *
~In(f) < 503 (Bs (I~ £13] ~ Bs [l — £3]) + 5 (0 + L)
t=1

* « ,,7
= 5y (Bs [ = 8] = B [Ifuss = £3]) + 5 (77 + 17)

[|f1 —f*”% N/ 2 2
<" 2 7 L
< o +5 (0% + L?)

: S 15 [
Choosing n = NCENENG
only know an upper bound on this distance, we can use that for setting n and replace ||f; — *||2 by

the upper bound. Finally, since Lp is convex, we can use Jensen’s inequality to push the average
over iterations inside to conclude the final statement. ]

we can conclude the result. Note that we assume we know ||f; —£*||2, if we



3 Smooth Convex Problems

In this section we will still assume that Lp is convex. But instead of assuming it is Lipschitz, we
assume that Lp is H-smooth. That is, we assume that the gradient of Lp is H-Lipschitz. That is:

IVLp(f) = VLp(f')[l2 < H|If — £

For instance, when the domain is unbounded, square loss while smooth is not Lipschitz and so such
a setting is useful to study.

Before we proceed to the bound that we can get in such a case for SGD, let us first prove a
useful inequality about smooth functions.

Proposition 2. Let G : R? — R be a H-smooth function. In this case, for any f € RY
VG615 < 217 (G(F) ~ min o))

Proof. Note that by fundamental theorem of calculus, for any function g : R — R, g(1) — ¢g(0) =
01 g'(t)dt. Now given f, ' let g(t) = G(f + t(f’ — f)), using fundamental theorem of calculus,

1 1 1
G(f’)—G(f):g(l)—g(O):/O g’(t)dt:/o iG(ert(f’—f))dt:/o VG(E++(E — )T (£ — F)dt

Next we add and subtract VG(f') inside the integral to get:
G(f') — G(f) = /01 (VG(E+t(f —£)) — VG(F)) " (f — £)dt + /01 VG(F) T (f' — f)dt
_ /0 1 (VG(E+t(f —£)) = VG(E) " (f — £)dt + VG(E)T(f - f)
< /01 |VG(f +t(f — £)) — VG(E)|, |If — Fl2dt + VGE) (£ —f)
Using H-smoothness,
1
< /0 tH ||f — £, IIf — £'|l2dt + VG(E) T (f' — )
= D fle -2+ vemTE -
Setting £/ = f — Y9 we get:

H|VGE); 1

G(f') — G(f) < = ZIVGHI3

-2 H?

Rearranging we conclude that:

IVG()IIz < 2H(G(f) - G(F)) < 2H(G(F) — min G(f))



Now given the above proposition we are ready to prove a bound for SGD.

Lemma 3. If the gradient variance condition in. Eq. 1 is satisfied and the risk Lp is convexr and
H-smooth, then, using online gradient descent/one pass SGD we get that for any £*:

1 < 2H|f, — £*|2 20 ||f — £*
Es [LD (ant>] *HlfiIlLD(f) < H 1n I +2 | i/ﬁ 2
t=1

Proof. We start the proof from Eq. 3 to have:

. 1 * x n
Lp(f;) — min Lp(f) < o (I = £15 — Bz, o) [lfir1 — £7113]) + 5 ( *+ IVLp(£)II3)

Now using Proposition 2 on Lp we can conclude that:
V20 < 211 (Lo(E) -~ njn Lo o))
and using this above we get,
Ip(6) ~win Lo(6) < oo (I~ 13 - B 162~ £12)) + Jo* + ot (L(6) - min Lo() )
Hence we conclude that
(= ntt) (Ep(6) = minLo(6)) < 5o (16~ 15 - B (I - £18]) + o?
We will set i such that nH < % Hence, we have that:
L) = min Lo () < = (18 = 13 = Bgs o [I6i01 = F3]) + n0°

Taking average over ¢ and expectation over sample we have:

n

1 & 11
- ZLD(ft)] —minLp(f) < o> (Es [If: - £°15] — Bs [lfera — £713]) + o
t=1 t=1

Eg

1

=n (Es [lIfr — £°[I3] — Es [lfars — £3]) +no
1

= — |l — £*3 + no”
nn

lIf1—f*]l2
ovn

Now we simply set 1 = min{ﬁ, }. This gives us the bound.
2H | — £*3 4 20 [Ify — £¥]l2

Tlltz:; Lo(f) n Vn

Just as in previous section, using Jensen we can move the average inside Lp to obtain the final
statement. O

Es

- mfin Lp(f) <

Remark 3.1. In both the sections, notice that beyond the variance bound, we only made assump-
tions like convexity and smoothness or Lipschitzness on Lp and made no other assumptions on £
itself. Also note that convexity in both the sections can be relazed to so called one point converity
around f* or in other words, we just need that Lp(f;) — Lp(f*) < VLp ()" (f, — £*) hold when
we compare loss of any i to that of £* and not for all pairs which can be a significantly weaker
assumption than convexity that seems to hold in many applications at least locally.



