
Mathematical Foundations of Machine Learning(CS 4783/5783)

Lecture 4: Rademacher Complexity, Binary Classification, Growth Function and VC dimension

1 Recap

In the previous lecture notes, we showed the following corollary.

Corollary 1. For any class F and any loss bounded by 1, for any δ > 0, with probability at least
1− δ,

LD(f̂ERM)−min
f∈F

LD(f) ≤ O

(√
log |F|x1,...,xn

|
n

+

√
log(1/δ)

n

)
Hence, it is clear that bounding |F|x1,...,xn

| yields a bound on the performance of ERM. In

this lecture we will restrict ourself to binary classification problem where F ⊂ {±1}X and loss
`(y′, y) = 11{y′ 6=y}. Under this setting we consider the the worst case |F|x1,...,xn

| which we next
introduce as growth function.

2 Growth Function and VC dimension

Growth function is defined as,
Π(F , n) = max

x1,...,xn

∣∣F|x1,...,xn

∣∣
That is, for the worst x1, . . . , xn, how many possible labelings does F make on x1, . . . , xn. From the
result in the previous lecture, we have already seen that the Rademacher Complexity is bounded

by O

(√
log |F|x1,...,xn |

n

)
and so overall, for any δ > 0, with probability at least 1− δ,

LD(f̂ERM)−min
f∈F

LD(f) ≤ O

(√
2 log Π(F , n)

n
+

√
log(1/δ)

n

)
Note that Π(F , n) is at most 2n but it could be much smaller. In general how do we get a handle
on growth function for a hypothesis class F? Is there a generic characterization of growth function
of a hypothesis class ?

Definition 1. VC dimension of a binary function class F is the largest number of points d =
VC(F), such that

ΠF (d) = 2d

If no such d exists then VC(F) =∞

If for any set {x1, . . . , xn} we have that |F|x1,...,xn
| = 2n then we say that such a set is shattered.

Alternatively VC dimension is the size of the largest set that can be shattered by F .
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Eg. Thresholds One point can be shattered, but two points cannot be shattered. Hence VC
dimension is 1. (If we allow both threshold to right and left, VC dimension is 2).

Eg. Spheres Centered at Origin in d dimensions one point can be shattered. But even two
can’t be shattered. VC dimension is 1!

Eg. Half-spaces Consider the hypothesis class where all points to the left (or right) of a hyper-
plane in Rd are marked positive and the rest negative. In 1 dimension this is threshold both to left
and right. VC dimension is 2. In d dimensions, think of why d+ 1 points can be shattered. d+ 2
points can’t be shattered. Hence VC dimension is d+ 1.

Claim 2. If a class of models F has VC(F) = ∞, then for any n, and any learning algorithm,
there is a distribution over instances such that with probability at least 1/2:

LD(f̂S)− inf
f∈F

LD(f) ≥ 1

2

where f̂S is the model returned by any learning algorithm that uses training sample S of size n.

Proof. Assume that a hypothesis class F has infinite VC dimension. This means that for any
n, we can find 2n points x1, . . . , x2n that are shattered by F . Now draw y1, . . . , y2n ∈ {±1}
as Rademacher random variables. Let D be the uniform distribution over the 2n instance pairs
(x1, y1), . . . , (x2n, y2n). Notice that since x1, . . . , x2n are shattered by F , we are in the realizable
PAC setting for any choice of y’s. Now assume we get n input instances drawn iid from this
distribution. Clearly in this sample of size n, we can at most witness n unique instances. Let us
denote J ⊂ [2n] as the indices of the 2n instances witnessed in the draw of n samples S. Clearly
|J | ≤ n. Now given any sample S, let f̂S be the model returned by a learning algorithm. Notice
first that for any model g, under this above distribution:

LD(g) =
1

2n

2n∑
i=1

11{g(xi)6=yi}

Also, as mentioned earlier, since x1, . . . , x2n is shattered, minf∈F LD(f) = 0. Hence,

LD(f̂S)−min
f∈F

LD(f) =
1

2n

2n∑
j=1

11{f̂S(xi) 6=yi} − 0

=
1

2n

∑
i∈J

11{f̂S(xi)6=yi} +
∑

i∈[2n]\J}

11{f̂S(xi)6=yi}


≥ 1

2n

∑
i∈[2n]\J

11{f̂S(xi)6=yi}

Now notice that y1, . . . , y2n are chosen as random coin flips. Further, sample S only reveals labels
of yi’s for any i ∈ J . On indices [2n] \ J , the random labels cannot be predicted by any algorithm
with accuracy better than 1/2. That is, for any i ∈ [2n] \ J , 11{f̂S(xi) 6=yi} is 1 with probability 1/2
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and 0 with probability 1/2. Hence, we can interpret
∑

i∈[2n]\J 11{f̂S(xi)6=yi} as the number of 1’s we

get when we flip |[2n] \ J | fair coins. This follows the binomial distribution and we can conclude

easily that with probability 1/2,
∑

i∈[2n]\J 11{f̂S(xi)6=yi} ≥
|[2n]\J |

2 . However, since |J | is at most, n,

we can conclude that with probability at least 1/2 over draws of y’s:

LD(f̂S)−min
f∈F

LD(f) ≥ n

2n
=

1

2

In fact, from the above its also clear that for any constant c ∈ (0, 1), we can conclude a lower bound
on excess risk that holds with probability at least c where the lower bound only depends on c.

The above claim shows that VC dimension being finite is at least necessary if we would like
to obtain bounds for binary classification problem for which excess risk goes to 0 with number of
samples n. On the other hand, the following celebrated lemma due to Vapnik and Chervonenkis
(English version published in 1971 and Russian version in 1968) and also independently shown by
Sauer and also by Shelah shows that when VC dimension is finite, then growth function only grows
as nVC(F). This result along with the bound on performance of ERM implies that if VC dimension

is indeed finite than ERM learns at a rate of O

(√
VC(F)

n

)
, thus showing that finite VC dimension

is also sufficient to get error bounds.

Lemma 3 (VC’71/Sauer’72/Shelah’72). For any class F ⊂ {±1}X with VC(F) = d, we have that,

Π(F , n) ≤
d∑

i=0

(
n

i

)

Proof of the above lemma is done via induction on n+ d. Also note that
∑d

i=0

(
n
i

)
≤ nd

Corollary 4. For any class of models F ⊂ {±1}X , for any δ > 0, with probability at least 1− δ,

LD(f̂ERM)−min
f∈F

LD(f) ≤ O

(√
VC(F) log n

n
+

√
log(1/δ)

n

)
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