Last Lecture



SUMMARY: STATISTICAL LEARNING

@ Useful in scenarios where we can collect training data from the
same pool of examples as we get training data from in an iid
fashion (Eg. typical object recognition etc.)

@ Measure of Performance: Excess risk bounds w.r.t. best model in a
class of models

@ Algorithm of choice : Empirical Risk Minimization (ERM),
Regularized ERM

@ Analysis:
e Bounds on excess risk via uniform convergence.

@ For binary classification, worst case rates characterized by VC
dimension
@ More generally, Rademacher complexity gives us a handle on rates

o Bounds via algorithmic stability: depend on algorithm used.



SUMMARY: ONLINE LEARNING

@ Useful in scenarios where no iid assumptions on data hold but we
know that a fixed model class is good for our problem. Needs
continuous feedback

@ Measure of Performance: Regret against best model in hindsight

@ Algorithms: Deriving algorithm and proving they work go hand
in hand. Classic algorithms like ERM don’t work

@ Examples:
o Online gradient descent: fi.1 < fi —MVE(f:, (X, y¢))
o Exponential weights algorithm: g;(f) o< exp(-n Z]t-;ll 0(f: (xj, y]‘)))



SUMMARY: BANDIT PROBLEMS

@ Useful in practical scenarios where we cant evaluate every model
on every time step but only get limited feedback on the loss of the
chosen model or prediction or action on a given instance.

@ Stochastic setting: Using Lower (or upper) confidence bound
algorithm. Optimism pays off, either we learn to eliminate
quickly or we are correct.

@ Adversarial Setting: Use full information (classic) algorithms but
used unbiased estimate of losses on every round.



SUMMARY: COMPUTATIONAL LEARNING THEORY

@ There are problems that can be learnt in sample efficient way but
not computationally efficiently

@ Proper Vs Improper learning makes a huge difference in terms of
computational efficiency of learning

@ Proper learning hardness can be shown via NP reductions

@ Improper learning hardness results we need to use other methods
like cryptographic hardness

@ Hardness results let us know what to focus on Eg. in theory of
deep learning



SUMMARY: DIFFERENTIAL PRIVACY

@ We need to be aware of privacy concerns while developing ML
algorithms

e Differential Privacy in one such mechanism where we build
randomized algorithms that are no too sensitive to any one data
point

@ Typical mechanism, inject noise into algorithm either at the output
or within the algorithm

@ Beware of reusing data, can lead to faulty conclusions

e Differential privacy can be used to alleviate this issue.
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@ Have tons of data to learn this task well

@ Have right models that can learn from all this data



@ For every user predict: Ads, products, news, ...
@ Have tons of data to learn this task well

@ Have right models that can learn from all this data

With Big Data comes Bigger Responsibilities . ..



Is ML FAIR, IMPARTIAL?
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Is ML FAIR, IMPARTIAL?

Prediction Fails Differently for
Black Defendants

AFRICAN
WHITE AMERICAN

Labeled Higher Risk,
But Didn’t Re-Offend

Labeled Lower Risk, Yet
Did Re-Offend

Overall, Northpointe's assessment tool correctly predicts
recidivism 61 percent of the time. But blacks are almost twice as
likely as whites to be labeled a higher risk but not actually re-
offend. It makes the opposite mistake among whites: They are
much more likely than blacks to be labeled lower risk but go on to

commit other crimes.




Can we make ML Fair?

These are machine learning algorithms that learn to
predict automatically

They are not designed to be unfair
Why is this happening?

How do we fix them?
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WHY Is ML UNFAIR?

the algorifhms in themselves are neutral. “This program had absoluiely n;)thing to
do with race... but multi-variable equations,”



WHY IS ML UNFAIR?

@ Data collection, labeling etc. can have unintentional biases

o We learn from past data, historic biases

@ Data in itself nor algorithms explicitly know of social inequities
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FAIRNESS THROUGH BLINDNESS?

@ Ignore all protected attributes.
Eg. Don’t look at race, gender etc.

@ Problem: You don’t need to look to be able to predict

Eg. User visits “www.artofmanliness.com”
... highly likely to be male
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EG. REAL VS FAKE NAMES

@ Biases are often not intentional ...

@ Most training examples standard white American names: James,
John, Robert, Jennifer, Michael, ...

@ Ethnic names often unique, much fewer training examples

Most ML models aim for accuracy for the majority at the expense of
mistakes on the smaller protected class
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Demographic Parity

Population
T : Protected subset

T : Rest of the population

P(Outcome|T) ~ P(Outcome|T“)



FAIRNESS THROUGH AWARENESS

Demographic Parity

Population

Eg. Fraction of people shown high
paying jobs in T and in T is equal
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FAIRNESS THROUGH AWARENESS

* |s this good enough?

o Say there is this algorithm to select people to
invite to apply for this exclusive, credit card
with high annual fee

* One way to satisfy the demographic parity:

 Make offer to higher income people in the
unprotected class

 Make offer to lower income people in protected
class (in same proportion)

NOT REALLY FAIR!
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FAIRNESS THROUGH AWARENESS

Equalized Odds
For all o, y in {0,1}
P(O=0|Y=y,T=1) = P(O=0|Y=y,T=0)
* Oisindependentof T givenY

* Proposed in Hardt, Price, Srebro 2016 and Zafar,
Valera, Rodriguez, Gummadi (2016)

* |ncentive to reduce error uniformly in all groups

Problem: Say in T, 2/100 people qualify and outside 50/100 gqualify
Company can make 26 offers: 25 to qualifying people in T"and 1in T
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FAIRNESS THROUGH AWARENESS

Sufficiency or Predictive Rate Parity
For all o, y in {0,1}

P(Y=y|O=0,T=1) = P(Y=y|O=0,T=0)
* Yisindependent of T given O
* Equal chance of success(Y=1) given acceptance

* Proposed in Zafar et al (2017)

Problem: Same as equal odds



IMPOSSIBILITY RESULT



IMPOSSIBILITY RESULT

* Jurns out that other than degenerate cases, any
two of the three criterion are mutually exclusive



IMPOSSIBILITY RESULT

* Jurns out that other than degenerate cases, any
two of the three criterion are mutually exclusive

* Chouldechova, 2016 and Kleinberg et al. 2016



IMPOSSIBILITY RESULT

* Jurns out that other than degenerate cases, any
two of the three criterion are mutually exclusive

* Chouldechova, 2016 and Kleinberg et al. 2016

* While there are no perfect fairness criterion, we still
want to ensure at least some notion of fairness,



IMPOSSIBILITY RESULT

* Jurns out that other than degenerate cases, any
two of the three criterion are mutually exclusive

* Chouldechova, 2016 and Kleinberg et al. 2016

* While there are no perfect fairness criterion, we still
want to ensure at least some notion of fairness,

e how do we do it?



IMPOSSIBILITY RESULT

* Jurns out that other than degenerate cases, any
two of the three criterion are mutually exclusive

* Chouldechova, 2016 and Kleinberg et al. 2016

* While there are no perfect fairness criterion, we still
want to ensure at least some notion of fairness,

e how do we do it?



ACHIEVING FAIRNESS

* Preprocessing: While doing feature extraction,
extract features that ensure independence of
feature to T (Eg. Equal odds)

* While training: Find model that minimizes training
error subject to fairness constraints

* Post-processing: Learn model as before on training
data, as post processing use extra training data to
learn a bias parameter to correct for fairness
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FAIR CLASSIFICATION

A view from a mile above:

Minimize Classification objective
(or whatever other surrogate loss you use usually)

Added Constraint: subject to proportion of labels in each
class being same for protected and
unprotected population



ACHIEVING FAIRNESS

* Post-processing:
* Learn model as before on training data,

e As post processing use fresh training data to learn a bias
parameter to correct for fairness

 Eg. Equal Odds (Binary classification)

 Learn mapping f from training set such that from input to
reals such thatY = 1if {(X) >0 and Y = O if not

« Now on fresh dataset, learn new threshold theta such that
for protected class, Y = 1 if {(X) > theta and Y = O if not

 Theta is chosen so as to ensure Equal odds



