McDiarmid's Inequality

Let $Z_1, ..., Z_n \in \mathcal{Z}$ be a sequence of n random variables drawn iid from a fixed distribution. Assume that $\Phi : \mathcal{Z}^n \mapsto \mathbb{R}$ is a function satisfying the condition that: For any $i \in [n]$, and any $z_1, ..., z_n \in \mathcal{Z}$ and any $z_i' \in \mathcal{Z}$,

$$\left|\Phi(z_1,\ldots,z_i,\ldots,z_n)-\Phi(z_1,\ldots,z_i',\ldots,z_n)\right|\leq \frac{C}{n}$$

Then we have the following concentration result:

$$P(|\phi(Z_1,\ldots,Z_n)-\mathbb{E}[\phi(Z_1,\ldots,Z_n)]|>\epsilon)\leq 2\exp(-\frac{2n\epsilon^2}{C^2})$$

Uniform Convergence

Eg: The function $\phi((x_1, y_1), \dots, (x_n, y_n)) = \max_{f \in \mathcal{F}} |\hat{L}_S(f) - L_{\mathbf{D}}(f)|$ satisfies the condition with C = 2 when loss is bounded by 1.

Hence we have that for any $\delta > 0$, with probability at least $1 - \delta$,

$$\max_{f \in \mathcal{F}} |\hat{L}_{S}(f) - L_{\mathbf{D}}(f)| \leq 2 \mathbb{E} \left[\max_{f \in \mathcal{F}} |\hat{L}_{S}(f) - L_{\mathbf{D}}(f)| \right] + O\left(\sqrt{\frac{\log(1/\delta)}{n}}\right)$$

Complexity Measure

SYMMETRIZATION AND RADEMACHER COMPLEXITY

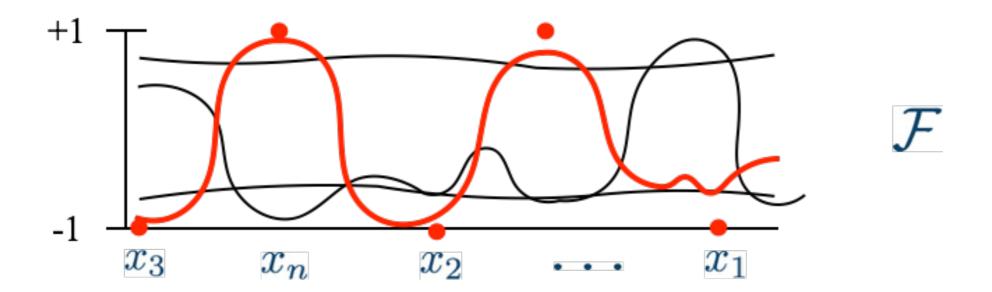
Let $\epsilon_1, \ldots, \epsilon_n \in \{\pm 1\}$ be Rademacher random variables where each ϵ_i is +1 with probability 1/2 and -1 with probability 1/2.

We will see that:

$$\mathbb{E}\left[\max_{f\in\mathcal{F}}\left|\hat{L}_{S}(f)-L_{\mathbf{D}}(f)\right|\right]\leq \frac{2}{n}\mathbb{E}_{S}\left[\mathbb{E}_{\epsilon}\left[\max_{f\in\mathcal{F}}\left|\sum_{t=1}^{n}\epsilon_{t}\ell(f(x_{t}),y_{t})\right|\right]\right]$$

Rademacher Complexity

Example:
$$\mathcal{X} = [0, 1], \ \mathcal{Y} = [-1, 1]$$



Proof of Symmetrization

Why is moving to Rademacher Complexity useful?

Given sample, define $\mathcal{F}_{|x_1,\ldots,x_n} = \{(f(x_1),\ldots,f(x_n)): f \in \mathcal{F}\}$

$$\mathbb{E}_{\epsilon} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell(f(x_{t}), y_{t}) \right] = \mathbb{E}_{\epsilon} \left[\max_{\mathbf{f} \in \mathcal{F}_{|x_{1}, \dots, x_{n}}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell(\mathbf{f}_{t}, y_{t}) \right]$$

$$\mathcal{F}_{|x_1,...,x_n}$$

Given sample, define
$$\mathcal{F}_{|x_1,\ldots,x_n} = \{(f(x_1),\ldots,f(x_n)): f \in \mathcal{F}\}$$

$$\mathbb{E}_{\epsilon} \left[\max_{f \in \mathcal{F}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell(f(x_{t}), y_{t}) \right] = \mathbb{E}_{\epsilon} \left[\max_{\mathbf{f} \in \mathcal{F}_{|x_{1}, \dots, x_{n}}} \frac{1}{n} \sum_{t=1}^{n} \epsilon_{t} \ell(\mathbf{f}_{t}, y_{t}) \right]$$

For each f, this term is average of 0 mean terms and hence concentrates

Only cardinality of $\mathcal{F}_{|x_1,\dots,x_n}$ matters

Lemma 4. For any class \mathcal{F} and any loss bounded by 1,

$$\mathbb{E}_{\epsilon} \left[\max_{\mathbf{f} \in \mathcal{F}_{|x_1, \dots, x_n}} \left| \frac{1}{n} \sum_{t=1}^n \epsilon_t \ell(\mathbf{f}[t], y_t) \right| \right] \le O\left(\sqrt{\frac{\log \left| \mathcal{F}_{|x_1, \dots, x_n} \right|}{n}}\right)$$

Eg. Thresholds, rectangle

GROWTH FUNCTION AND VC DIMENSION

$$\Pi(\mathcal{F}, n) = \max_{x_1, \dots, x_n} |\mathcal{F}_{|x_1, \dots, x_n}|$$

Consider the case of binary classification:

Definition 1. VC dimension of a binary function class \mathcal{F} is the largest number of points $d = VC(\mathcal{F})$, such that

$$\Pi_{\mathcal{F}}(d) = 2^d$$

If no such d exists then $VC(\mathcal{F}) = \infty$

Maximum number of points that can be shattered.

GROWTH FUNCTION AND VC DIMENSION

If VC dimension is infinite then learning is not possible!

Think of a proof strategy

GROWTH FUNCTION AND VC DIMENSION

Lemma 3 (VC'71/Sauer'72/Shelah'72). For any class $\mathcal{F} \subset \{\pm 1\}^{\mathcal{X}}$ with $VC(\mathcal{F}) = d$, we have that,

$$\Pi(\mathcal{F}, n) \le \sum_{i=0}^{d} \binom{n}{i}$$

Proof of the above lemma is done via induction on n+d. Also note that $\sum_{i=0}^{d} {n \choose i} \leq n^d$

If VC is finite, growth function has a nice bound and hence we can learn!