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Lecture 3

Uniform Convergence, Symmetrization and Rademacher
Complexity
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STATISTICAL LEARNING FRAMEWORK

D is a distribution on X x Y

D captures the idea of this set U

Training sample S = {(z1,y1),---,(Tn,Yn)} Each (x,, ;) ~ D

Risk of a model g defined as Lp(g) = () ~D £(g(x),y)]

(Future instances drawn from D)

Excess risk of model g w.r.t. model class F defined as

Lp(g) — ?%1]1_1 Lp(f)

Goal: provide an algorithm for which excess risk is small



EMPIRICAL RISK MINIMIZATION

Pick a model in class that minimizes training error

. E a minlAL
JERM l”gfef S(f)

e \When does this succeed?

* When model class is too complex, we already saw this
can fail

* When model class is say just one function, it succeeds
due to law of large numbers (concentration)

* In general how well does this algorithm do?



ERM OVER FINITE CLASS

If losses are bounded by 1 (in absolute) and |F| < oo, then,
for any 0 > 0 with probability at least 1 — o,

Lo (ferm) — ]Jf}g]{lLD(f) <

\/ 8log (2|F|/6)

n



ERM OVER FINITE CLASS

Hoettding Inequality: Let Z4, .. ., Z, be a sequence of n random
variables bounded by 1, drawn iid from a fixed distribution. Then:

1 2 2
P( —ZZt— /| > €) SZexp(—nTe)




ERM OVER FINITE CLASS

Hoettding Inequality: Let Z4, .. ., Z, be a sequence of n random
variables bounded by 1, drawn iid from a fixed distribution. Then:

1 0 2
P( —ZZt— /| > €) SZexp(—nTe)

Proof idea:

For each f € F define Z/ = ¢(f(z4), ys)

Apply Hoeffding for each f individually

Use union bound to move to uniform deviation



BEYOND FINITE MODEL CLASS

e Idea 1: Find a finite set 7’ such that for any / € F there
exists an.f’ € F' sit.

vo,y,  [0(f(2),y) — (f(z),y)| <A

e But this may not always work, consider the example of
learning thresholds:

0 f 1

A =[0,1] f(x) = sign(z — f)
F indexed by set [0, 1]

For any A < 1/2, this class cannot be approximated by a finite set.



UNIFORM CONVERGENCE

We have shown that for any € > 0,

P(LD(?ERM) — min LD(f) > 26) < P(max‘ig(f) —LD(/")| > 6)

feF feF

Next, we will see that maxs.r ‘ﬁs (f) = Lp(f)| is concentrated near its
expectation.



MCDIARMID’S INEQUALITY

Let Zq,..., Z, € Z be a sequence of n random variables drawn iid from
a fixed distribution. Assume that © : Z” — R is a function satisfying
the condition that: For any i € [n], and any z1, .. ., zy € Z and any z; € Z,

2ne?
2

P(\cl)(Zl ..... Zn) — It [CI)(Zl ..... Zn)]‘ > €) < 2exp(— )



UNIFORM CONVERGENCE

Eg! The function cl)((xl,yl) ..... (xn, yn)) o maxfejc ‘ES (f) — LD (f)‘
satisfies the condition with C = 2 when loss is bounded by 1.



UNIFORM CONVERGENCE

Eg! The function cl)((xl,yl) ..... (xn, yn)) o maxfejc ‘ES (f) — LD (f)‘
satisfies the condition with C = 2 when loss is bounded by 1.

Hence we have that for any 6 > 0, with probability at least 1 -,

log(l/é))

n

max‘ﬁs(f) —LD(f)‘ <2 hl}leiz(‘is(f) —LD(f)“ + O(\/

feF

Complexity Measure



SYMMETRIZATION AND RADEMACHER COMPLEXITY

Leteq,..., €, € {+1} be Rademacher random variables where each ¢; is
+1 with probability 1/2 and -1 with probability 1/2.

We will see that:
] A 1 5 1T } .
D L - L < -Eq|E. { ,
f}‘g\ s(f) D(f)\‘ s | f}lég ;& (f(xt), yt) |

Rademacher Complexity



RADEMACHER COMPLEXITY

Example : X =1[0,1], YV = [-1,1]




Proof of the Result



Why is this useful?



