Mathematical Foundations of ML (CS 4785/5783) Lecture 2

Statistical Learning and Uniform Convergence

http://www.cs.cornell.edu/Courses/cs4783/2022sp/notes02.pdf

SCENARIO II

Universe of instances

Set of all possible emails!

On each round t:

Email x_t is composed, possibly by spammer!

System classifies email as \hat{y}_t

True label $y_t = f_{i^*}(x_t)$ revealed

U

We get feedback every round. But spammer can pick next email.

Goal: Make as few mistakes as possible.

SCENARIO II

How about using the same algorithm from scenario 1 for each t (re-run)?

How many mistakes would it make?

Ans: N-1

SCENARIO II

Algorithm:

Pick
$$\mathcal{F}_t = \{f_i : i \in [N], \forall s < t, f_i(x_s) = y_s\}$$

Set $\hat{y}_t = \text{Majority}(\{f(x_t) : f \in \mathcal{F}_t\})$

Mistake Bound:

$$\sum_{t} \mathbf{1} \{ \hat{y}_t \neq y_t \} \le \log_2 N$$

STATISTICAL LEARNING FRAMEWORK

Eg: ML for Face recognition

 \mathcal{X} : set of all images

U

We don't have access to U, we just need the samples

STATISTICAL LEARNING FRAMEWORK

When we deploy the system, do we really sample from U at random?

In summer In winter

No assumption is right but some are useful!

STATISTICAL LEARNING FRAMEWORK

D is a distribution on $\mathcal{X} \times \mathcal{Y}$

D captures the idea of this set **U**

Training sample
$$S = \{(x_1, y_1), \dots, (x_n, y_n)\}$$
 Each $(x_t, y_t) \sim \mathbf{D}$

Risk of a model g defined as $L_{\mathbf{D}}(g) = \mathbb{E}_{(x,y)\sim \mathbf{D}}\left[\ell(g(x),y)\right]$

(Future instances drawn from **D**)

Excess risk of model g w.r.t. model class \mathcal{F} defined as

$$L_{\mathbf{D}}(g) - \min_{f \in \mathcal{F}} L_{\mathbf{D}}(f)$$

Goal: provide an algorithm for which excess risk is small

TRAINING LOSS VS TEST LOSS

Training loss:
$$\widehat{L}_S(g) = \frac{1}{|S|} \sum_{(x,y) \in S} \ell(g(x), y)$$

Test loss: Draw fresh samples (not used by algorithm) and compute average error on that

Test loss is a good proxy for risk (provided we never use it in any sense for training/parameter tuning etc.)

THE COMMON FALLACY

$$\forall f \in \mathcal{F}, P\left(\left|L_{\mathbf{D}}(f) - \widehat{L}_{S}(f)\right| \text{ is large}\right) \text{ is small}$$

Algorithm picks $\hat{f}_S \in \mathcal{F}$ and so

$$P\left(\left|L_{\mathbf{D}}(\hat{f}_S) - \widehat{L}_S(\hat{f}_S)\right| \text{ is large}\right) \text{ is small}$$

THIS IS FALSE IN GENERAL!

Breakout room 3 mins

THE COMMON FALLACY

 The issue with benchmark dataset like CIFAR and Imagenet

Double edged sword

EMPIRICAL RISK MINIMIZATION

Pick a model in class that minimizes training error

$$\hat{f}_{\text{ERM}} \in \arg\min_{f \in \mathcal{F}} \hat{L}_S(f)$$

- When does this succeed?
 - When model class is too complex, we already saw this can fail
 - When model class is say just one function, it succeeds due to law of large numbers (concentration)
 - In general how well does this algorithm do?

ERM AND UNIFORM CONVERGENCE

$$P\left(L_{\mathbf{D}}(\hat{f}_{\text{ERM}}) - \min_{f \in \mathcal{F}} L_{\mathbf{D}}(f) > 2\epsilon\right) = P\left(L_{\mathbf{D}}(\hat{f}_{\text{ERM}}) - \widehat{L}_{S}(\hat{f}_{\text{ERM}}) + \widehat{L}_{S}(\hat{f}_{\text{ERM}}) - \min_{f \in \mathcal{F}} L_{\mathbf{D}}(f) > 2\epsilon\right)$$

$$= P\left(L_{\mathbf{D}}(\hat{f}_{\text{ERM}}) - \widehat{L}_{S}(\hat{f}_{\text{ERM}}) + \max_{f \in \mathcal{F}} \left(\widehat{L}_{S}(\hat{f}_{\text{ERM}}) - L_{\mathbf{D}}(f)\right) > 2\epsilon\right)$$

$$\leq P\left(L_{\mathbf{D}}(\hat{f}_{\text{ERM}}) - \widehat{L}_{S}(\hat{f}_{\text{ERM}}) + \max_{f \in \mathcal{F}} \left(\widehat{L}_{S}(f) - L_{\mathbf{D}}(f)\right) > 2\epsilon\right)$$

$$\leq P\left(\max_{f \in \mathcal{F}} \left|\widehat{L}_{S}(f) - L_{\mathbf{D}}(f)\right| > \epsilon\right)$$

$$(1)$$

ERM OVER FINITE CLASS

If losses are bounded by 1 (in absolute) and $|\mathcal{F}| < \infty$, then, for any $\delta > 0$ with probability at least $1 - \delta$,

$$L_{\mathbf{D}}(\hat{f}_{\text{ERM}}) - \min_{f \in \mathcal{F}} L_{\mathbf{D}}(f) \le \sqrt{\frac{8 \log(2|\mathcal{F}|/\delta)}{n}}$$

ERM OVER FINITE CLASS

Hoeffding Inequality: Let Z_1, \ldots, Z_n be a sequence of n random variables bounded by 1, drawn iid from a fixed distribution. Then:

$$P\left(\left|\frac{1}{n}\sum_{t=1}^{n}Z_{t}-\mathbb{E}Z\right|>\epsilon\right)\leq2\exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

ERM OVER FINITE CLASS

Hoeffding Inequality: Let Z_1, \ldots, Z_n be a sequence of n random variables bounded by 1, drawn iid from a fixed distribution. Then:

$$P\left(\left|\frac{1}{n}\sum_{t=1}^{n}Z_{t}-\mathbb{E}Z\right|>\epsilon\right)\leq2\exp\left(-\frac{n\epsilon^{2}}{2}\right)$$

Proof idea:

For each
$$f \in \mathcal{F}$$
 define $Z_t^f = \ell(f(x_t), y_t)$

Apply Hoeffding for each f individually

Use union bound to move to uniform deviation

BEYOND FINITE MODEL CLASS

• Idea 1: Find a finite set \mathcal{F}' such that for any $f \in \mathcal{F}$ there exists an $f' \in \mathcal{F}'$ s.t.

$$\forall x, y, \quad |\ell(f'(x), y) - \ell(f(x), y)| < \Delta$$

 But this may not always work, consider the example of learning thresholds:

For any $\Delta < 1/2$, this class cannot be approximated by a finite set.