Mathematical Foundations of ML (CS 4785 /5783)

Lecture 2

Statistical Learning and Uniform Convergence

http://www.cs.cornell.edu/Courses/csd4d783/2022sp/notes02.pdf



Universe of instances

On each round t:

Email z; is composed, possibly

by spammer!

Set of all possible emails!

System classifies email as gy

True label y; = fi«(x¢) revealed

U

We get teedback every round. But spammer can pick next email.

Goal: Make as few mistakes as possible.



How about using the same algorithm from scenario 1 for each t (re-run)?

How many mistakes would it make?

Ans: N-1



Algorithm:

Pick .Ft = {fz 11 € [N],VS < t, fz(ws) — ys}
Set 4, = Majority({ f(z¢) : f € Fi})

Mistake Bound:

Z 1y # ye ) <logy N
t

Why?



STATISTICAL LEARNING FRAMEWORK

Eg: ML for Face recognition

X : set of all images

We don’t have access to U, we just need the samples



STATISTICAL LEARNING FRAMEWORK

When we deploy the system, do we really sample from U at random?

In summer In winter

No assumption is right but some are useful!



STATISTICAL LEARNING FRAMEWORK

D is a distribution on X x Y

D captures the idea of this set U

Training sample S = {(z1,y1),---,(Tn,Yn)} Each (x,, ;) ~ D

Risk of a model g defined as Lp(g) = () ~D £(g(x),y)]

(Future instances drawn from D)

Excess risk of model g w.r.t. model class F defined as

Lp(g) — ?%1]1_1 Lp(f)

Goal: provide an algorithm for which excess risk is small



TRAINING LOSS VS TEST LOSS

Training loss: Zg(g) = — Z E(g(x)vy)

Test loss: Draw fresh samples (not used by algorithm)

and compute average error on that

Test loss is a good proxy for risk
(provided we never use it in any sense for training/parameter tuning etc.)



THE COMMON FALLACY

AN

vf € F.P(|Lo(f) - Ls(f)

1S large> is small

Algorithm picks fs c JF and so

P (|LD(fS) — Ls(fs)

1S 1arge) is small

THIS IS FALSE IN GENERAL!



Breakout room 3 mins



THE COMMON FALLACY

e The issue with benchmark dataset like CIFAR and
Imagenet

e Double edged sword



EMPIRICAL RISK MINIMIZATION

Pick a model in class that minimizes training error

. E a minlAL
JERM l”gfef S(f)

e \When does this succeed?

* When model class is too complex, we already saw this
can fail

* When model class is say just one function, it succeeds
due to law of large numbers (concentration)

* In general how well does this algorithm do?



ERM AND UNIFORM CONVERGENCE

fer

r (L'D(.fl-’.-l{l\-i) — 1{1(111}_1 Lp(f) > 26) =r (LD(.fAI—‘.'R..\-1) — L(frrm) + Ls(ferm) — ?él_l;.l Lp(f) > 'ZC)
=P (LD(f ) — Ls(frru) + s (Z'S(flil{l\fl) — Lp(f )) = 2“)
<P (LD(fE-I{.3-I) — Ls(ferm) + max (f-s(.f ) — Lp(f )) > 26)
feF
< P(max‘zg(f)—LD(f)| >() (1)



ERM OVER FINITE CLASS

If losses are bounded by 1 (in absolute) and |F| < oo, then,
for any 0 > 0 with probability at least 1 — o,

Lo (ferm) — ]Jf}g]{lLD(f) <

\/ 8log (2|F|/6)

n



ERM OVER FINITE CLASS

Hoettding Inequality: Let Z4, .. ., Z, be a sequence of n random
variables bounded by 1, drawn iid from a fixed distribution. Then:

1 2 2
P( —ZZt— /| > €) SZexp(—nTe)




ERM OVER FINITE CLASS

Hoettding Inequality: Let Z4, .. ., Z, be a sequence of n random
variables bounded by 1, drawn iid from a fixed distribution. Then:

1 0 2
P( —ZZt— /| > €) SZexp(—nTe)

Proof idea:

For each f € F define Z/ = ¢(f(z4), ys)

Apply Hoeffding for each f individually

Use union bound to move to uniform deviation



BEYOND FINITE MODEL CLASS

e Idea 1: Find a finite set 7’ such that for any / € F there
exists an.f’ € F' sit.

vo,y,  [0(f(2),y) — (f(z),y)| <A

e But this may not always work, consider the example of
learning thresholds:

0 f 1

A =[0,1] f(x) = sign(z — f)
F indexed by set [0, 1]

For any A < 1/2, this class cannot be approximated by a finite set.



