This baby says: BORING!

Administrative Stuff
Course Overview

• Instructors:
 – Kilian Q. Weinberger, Karthik Sridharan

• Homepage:
 – https://www.cs.cornell.edu/courses/cs4780/
 – Vocareum: http://vocareum.com

• TAs:
 – Many (more and better than you think)

• Office Hours / Recitations:
 – TA Office Hours: **Every day.** (Details will be posted on course webpage.)
 – Prof. Office Hours: **TBA**

• Questions:
 – Post all questions on ED (you can make them private)
 – **Do not email Professors directly (except in an emergency)**
 – Email staff at: **cs4780staff@gmail.com**
Course resources

• Primary texts
 • Machine Learning a Probabilistic Perspective (K.P. Murphy)
 • The Elements of Statistical Learning (Hastie, Tibshirani, Friedman)

• Additional texts
 • An Introduction to Statistical Learning by James, Witten, Hastie, and Tibshirani
 • Patterns, Predictions, and Actions by Hardt and Recht
 • Fairness and Machine Learning by Barocas, Hardt, and Narayanan

• Background and programming resources on the website
Kilian
“The Dark Forest”
Jack
“Going Infinite”
Joanna
“The Devotion of Suspect X”
Afua
“Born A Crime”
Gloria G.
“The Anthropocene Reviewed”
James
“The Sandman”
Yousef
“The Elements of Statistical Learning”
Chris
“Passwords”
Raphael
“Crime and Punishment”
Sally
The Alignment Problem”
Tanvi
“The Fishermen and the Dragon”
Mohammad
“The Queen’s Thief”
Duncan
“Slaughterhouse-Five”
Emily W.
“Tender is the Flesh”
Prakriti
“The Girl on the Train”
Yuqing
“In The Blink of An Eye” by Andrew Parker
Fengyu
“The Prince of Milk”
Tyler
“When Breath Becomes Air”
Peter
“The Three-body Problem”

Karthik
“The Art of Programming”
Course Breakdown 5780

• **45% Theory: Midterm + Final**
 • Closed book
 • No cheat sheets!
 • No personal notes

• **35% Programming Assignments**
 • Up to 2 members in each team
 • 2 days extension per team per project
 • Autograder (unlimited resubmissions)
 • *Extra credit if you beat my own submission*
 • *Extra credit if you win contests*

• **10% Paper Comprehension (mandatory)**
 • *Original Research Papers in ML*
 • Canvas Quizzes

• **10% Homeworks**
 • Up to 4 members in each team
 • Preparation for exam
Course Breakdown 4780

- **{45% or 48%} Theory: Midterm + Final**
 - Closed book
 - No cheat sheets!
 - No personal notes

- **{35% or 37%} Programming Assignments**
 - Up to 2 members in each team
 - 2 days extension per team per project
 - Autograder (unlimited resubmissions)
 - Extra credit if you beat my own submission
 - Extra credit if you win contests

- **{0 or 15%} Paper Comprehension (optional)**
 - Original Research Papers in ML
 - Canvas Quizzes

- **{10% or 15%} Homeworks**
 - Up to 4 members in each team
 - Preparation for exam
Placement Exam

• Due January 31st!!!

• **Canvas Page**

• Get started early!!

• It is there for your own protection!

• This is how you get a Vocareum invite!

• Take it even if you are on the **waitlist**!
Study Groups (2-4 people)

- You **must** join a study group by the end of next week.
- Find people on Ed
- This course will cover non-trivial material, learning in a group makes it easier and more fun!
http://vocareum.com

- Pass placement exam -> get account
- There will be 8(+2) projects
- You have (roughly) 2 weeks for each project
- Unlimited submits until deadline
- Costs around $30 :-(

![Vocareum Project Submission](image.png)
Placement Exam II (Project -1)

- NUMPY proficiency test
- Will turn into your own cheat-sheet
- Please take it seriously - this is for your own good
- We will go through the solutions in a dedicated section
• **Important notes:**

 • Setup a (secret) **screen name** for your team for the leaderboard

 • (top right corner - click on your login)

 • Only text with `<GRADED>` and `</GRADED>` will be graded

 • !!!You **MUST** form teams before you get started!!!!!
Course Topics

• We will cover:
 • Parametric / Non-parametric learning
 • Empirical Risk Minimization
 • Unsupervised Learning
 • Bias/Variance Trade-off
 • Boosting
 • Support Vector Machines
 • Deep Learning

• We will **not** cover:
 • Graphical Models -> [CS4700]
 • Reinforcement Learning -> [CS4789]
 • Learning Theory -> [CS4783]
 • Genetic Programming
AI Path @ Cornell

Level 1

- Intro to AI [CS4700]
- Intro to ML [CS4780]
- Fund. of ML [ECE4200]
- Math Found. [CS4850]

Core ML
Applications
Theory
Search

Level 2
(Some L1 courses as prerequisite)

- Deep Learning [CS4782]
- Principles of Large Sc. ML. [CS 4787]
- Reinforcement Learning [CS 4789]
- Math. Found. Of ML [CS 4783]
- Computer Vision [CS 4670]
- Natural Language Processing [CS 4740]
- Found. of Robotics [CS 4750]
- Comp. Genetics [CS 4775]

Many more, cross listed from other parts of Cornell!
Prerequisites
Prerequisites

• Three pillars of ML:
 • Statistics / Probability
 • Linear Algebra
 • Multivariate Calculus

• Should be confident in at least 1/3, ideally 2/3.

• TAs might be able to give recitations on some topics if needed. (But don’t rely on it.)
About this course

• Take this course if …
 • you are interested in Machine Learning
 • you are comfortable with a decent amount of mathematics
 • you are not scared of programming

• Don’t take this course if …
 • matrices scare you
 • you don’t remember how to take derivatives
 • you want an easy A

• You cannot take this course if you fail the placement exam.
 • In that case, take appropriate prerequisites and come back next year.
Student comments

• “[…] Requires a good knowledge in math and derivatives.”
• “A TON of work, but mostly worth it for a very valuable skill.”
• “great course, but prepare to work your butt off.”
• “The topics were pretty complicated and difficult to understand quickly. I would have preferred a slightly slower pace.”
• “It's mostly a math class”
• “Huge work load, excessive at times, but that's just the nature of the course”
Academic Integrity

• We **actively** look for academic conduct violations

• The autograder checks for plagiarism

• (Zero tolerance policy: all occurrences will be reported.)
Academic Integrity

• **Examples:**
 - Most common: Students steal from outside source
 - Students post to RentACoder.com or other page
 - Students post solutions on the web
 - Students use solutions from last year’s course
But: Using LLMs is OK :-)

- You can use LLMs (e.g. ChatGPT, Bard) for your assignments, but you must hand in a detailed description of how you used it (including all prompts and outputs)
5K Run
Early May

• Belle Sherman 5K
• Karthik and Kilian will run!
• Usually after last class
Machine Learning (ML)

Programs that *improve* with *experience*.
Traditional Computer Science

Traditional CS:

Data → Program → Computer → Output
Machine Learning

Traditional CS:

Data → Program → Output

Computer

Machine Learning:

Data → Output → Program

Computer
Machine Learning

Machine Learning:
- Data → Computer → Program → Output

Traditional CS:
- Data → Computer → Output
Machine Learning

Training:
Data → Computer → Program (Model)

Testing:
Data → Computer → Output
A (very brief) History of ML
The Turing Test, 1950

A machine is intelligent if its answers are indistinguishable from a human’s.

Alan Turing
Checkers Program, 1952

Arthur Samuel

Created a Checkers-playing program that got better overtime.

Also introduced the term "Machine Learning."

The term Artificial Intelligence originated in 1956 at a Workshop at Dartmouth
Perceptron, 1957

Predecessor of deep networks.

Frank Rosenblatt @ Cornell!

Separating two classes of objects using a linear threshold classifier.
New Navy Device Learns by Doing
- The New York Times (July 8, 1958)

“Later perceptrons will be able to recognize people and call out their names and instantly translate speech in one language to speech or writing in another language, it was predicted.”
Frank Rosenblatt @ Cornell!

- 1962 Rosenblatt invents Multi-Layer Perceptron (MLP) (fixed hidden layer)
- 1965 Ivakhnenko and Lapa introduce first Feed Forward Neural Net (FFNN)
- 1967 First FFN trained with SGD [Amari 1967]
- 1970 Modern back-propagation is introduced by Seppo Linnainmaa
First AI Winter (1974-1980)

- (1969) Minsky & Papert “killed” AI
 - Perceptron cannot learn XOR function
- Burst huge expectation bubble
- Speech understanding / translation fails
- UK and US stop funding AI research
- Neural Networks and AI become “bad words”
- Rise of Rule based Systems
A.I. Boom - then Winter [1980-1993]

- AI BOOM: 1980-1987
 - Search Algorithms (No Learning)
 - Expert Systems
- AI winter: 1987-1993
 - Expectations too overhyped
 - Exponential algorithms misunderstood
 - A.I. Bubble bursts
Rebirth of A.I. as Machine Learning

- Machine Learning:
 - Originally: Mostly a name game to get funding.

- Differences in approach:
 - ML: Bottom up, AI: Top down
 - ML: More practical, smaller goals
 - Based on **Statistics and Optimization, not Logic and Search**
TD-Gammon (1994)

- Gerry Tesauro (IBM) teaches a neural network to play Backgammon. The net plays 100K+ games against itself and beats world champion [Neurocomputation 1994]

- Algorithm teaches itself how to play so well!!!

- Algorithm found new techniques that people had erroneously ruled out.
Deep Blue (1997)

• IBM’s Deep Blue wins against Kasparov in chess. Crucial winning move is made due to Machine Learning (G. Tesauro).

• (Mostly a more classical AI system)
Expanding the reach, 2000s

Learning to rank

• Powering search engines: Yahoo, Google, Bing, …

Topic Modeling:

• Detecting and organizing documents by subject matter.
• Making sense of the unstructured data on the web.

Online economy:

• Ad placement and pricing.
• Product recommendation.

Machine learning became profitable!

Euphoria! Excitement!
2000-2010 The Convex Years

- Success of **Support Vector Machines** (SVM) and **Convex** Optimization

- **Kernelization** enables non-linear classifiers that are still convex

- Allows **rigorous proofs** about convergence, learning guarantees

- Finally **solid theory** and **empirical success**

- (Non-convex algorithms, e.g. Neural Networks fell out of favor and were frowned upon.)
Return of Neural Networks, 2010s

Neural networks (aka Multi-Layer Perceptrons) return and excel at image recognition, speech recognition, ...

The 2018 Turing award was given to Yoshua Bengio, Geoff Hinton, and Yann LeCun.
2016 Alpha Go

- 1920 CPUs and 280 GPUs
- Deep Mind’s Alpha Go wins against Lee Sedol 5:1
- Big shock
 - China invests heavily in AI research
- Beginning of “AI arms race”
Now: Surrounded by Machine Learning

Euphoria mixed with fear and anxiousness
2021 Generative Models become Mainstream

- 178 Billion Parameters
- Cost: $4.6 Million (est.)
- 355 GPU years of training (est.)
- Trained on 45 TB of text
write a biblical verse in the style of the King James Bible explaining how to remove a peanut butter sandwich from a VCR

And it came to pass that a man was troubled by a peanut butter sandwich, for it had been placed within his VCR, and he knew not how to remove it.

And he cried out to the Lord, saying, "Oh, Lord, how can I remove this sandwich from my VCR, for it is stuck fast and will not budge?"

And the Lord spoke unto him, saying, "Fear not, my child, for I shall guide thy hand and show thee the way. Take thy butter knife, and carefully insert it between the sandwich and the VCR, and gently pry them apart. And with patience and perseverance, the sandwich shall be removed, and thy VCR shall be saved."

And the man did as the Lord commanded, and lo and behold, the sandwich was removed from the VCR, and the man was saved.

And the Lord said, "Verily I say unto thee, seek not to put thy peanut butter sandwiches in thy VCR, for it is not a suitable place for such things. Rather, keep thy sandwiches in thy refrigerator or on thy plate, where they belong."

And the man heeded the Lord’s words, and from that day forth, he kept his sandwiches in their proper place, and was saved from trouble and woe. Amen.
DALLE Text2Images - ML is creative

Teddy bears mixing sparkling chemicals as mad scientists in a steampunk style

Teddy bears working on new AI research underwater with 1990s technology

An astronaut playing basketball with cats in space in a watercolor style

https://openai.com/dall-e-2/
ML in Society

Change of Problem Formulation:
- 1980-2005: Make ML accurate enough for Society
- 2005-now: Prevent ML misuse in Society
- New Technology that can **transform** society can also **overwhelm** it
 - E.g. Steam engine late 1800s (lead to sweat shops, exploitation)
 - E.g. Cars: out-of-control traffic accidents until 1970s
Data privacy / misuse

Learning models leak training data (Fredrickson et al. ‘15)

Learning algorithms detect sexual orientation better than people (Wang & Kosinski’17)

Formal definitions of data privacy:

• K-anonymity (Sweeney)

• Differential Privacy (Dwork, McSherry, Nissim, Smith).
Robust and Secure ML

Image Recognition
Misreading traffic signs
(Eykholt et al)

Speech recognition
Hide commands in noise (Carlini & Wagner)

Poisoning Attacks
Tay (chat bot) became inflammatory in 16 hr.

How to create robust and secure machine learning algorithms?
Learning and the Society

- Bad dynamics, perpetuating and worsening stereotypes and biases.
- Who carries the burden of bad prediction?
- How to design good dynamics?

The Best Algorithms Struggle to Recognize Black Faces Equally

Gender and racial bias found in Amazon’s facial recognition technology (again)

Do Google's 'unprofessional hair' results show it is racist?

Google’s algorithm shows prestigious job ads to men, but not to women. Here’s why that should worry you.

How Amazon Accidentally Invented a Sexist Hiring Algorithm

A company experiment to use artificial intelligence in hiring inadvertently favored male candidates.

When an Algorithm Helps Send You to Prison

By Ellora Thadaney Israni
AI and Online advertising

- Advertisers pay AI companies to induce change in people’s behaviors
- Learn from clicks what people want
- People don’t always want what they click on
 - Promotion of fake / sensational news
 - Leads to fast clicks/ prolonged engagement (more advertising time)
 - Causes (social) anxiety, fear, undesired behavior, elevates misinformation

A man can do what he wants, but not want what he wants.

Arthur Schopenhauer

"Der Mensch kann tun was er will, er kann aber nicht wollen was er will."
Now let’s get crack’n
To-do action items:

• Pass Placement Exam!
• Find study group
• Autograder Setup:
 • Find Teammate
 • Start Project -1
 • Start Project 0