Unsupervised Learning

Given: Unlabeled data \(D = \{ x_1, \ldots, x_n \} \subset \mathbb{R}^d \) — No labels \(y

Unsupervised learning attempts to find (hidden) structure in your data.

Clustering: K-Means

(Ref: Cagan 1969)

Assumptions:
- We know there are \(k \) clusters
- Euclidean distance measures similarity
- Clusters are spherical
- Clusters have equal variance

Let data indices be \(\{1, \ldots, n\} \)

Cluster assignment:
\[
x = \begin{cases} 1 & \text{if } x \text{ falls in cluster } k \\ 0 & \text{otherwise} \end{cases}
\]

Cluster center:
\[
\mu_k = \frac{1}{n_k} \sum_{i=1}^{n_k} x_i
\]

Loss function:
\[
L(\mu_1, \ldots, \mu_k) = \frac{1}{2} \sum_{k=1}^{k} \sum_{i=1}^{n_k} (x_i - \mu_k)^2
\]

1. **Optimize \(\mu \) if \(x \) is fixed.**
 \[
 \mu_k = \arg\min_x L(x) \Rightarrow \mu_k = \frac{1}{n_k} \sum_{i=1}^{n_k} x_i
 \]
 For each \(\mu_k \), the contribution to the loss is \(\sum_i (x_i - \mu_k)^2 \) — Parabola

2. **Minimize \(L \) if \(\mu_1, \ldots, \mu_k \) are fixed.**
 \[
 x_i = \begin{cases} 1 & \text{if } x_i = \arg\min_k (x_i - \mu_k)^2 \\ 0 & \text{otherwise} \end{cases}
 \]
 All points that are closest to \(\mu_k \).
 For each \(k \), you can contribute \((x_i - \mu_k)^2 \) or \((x_i - \mu_k)^2 \).
 For each \(k \), pick the smallest one to minimize \(L \).

K-means algorithm:

1. Initialize \(\mu_1, \ldots, \mu_k \) somehow
 (e.g., random points or heuristics)
2. Assign \(x \) with \(\mu_k \)
3. Assign \(x \) to \(\mu_k \) using 2
 Repeat until convergence

Initialization:
- Can be arbitrary. Perform multiple runs, pick solution with lowest \(L \).
- Heuristics (Arthur 2007):
 - Pick \(\mu_k \) randomly from \(D \)
 - For \(k \) to \(k \):
 - Use \(D \) to define \(d = \max_{i \neq j} (x_i - x_j)^2 \)
 - Pick \(\mu_k \) randomly from \(D \) proportionate to \(d \)

Easy to show: \(L \) can never increase.
How to find k if it is unknown?

Run k-means for \(k=1,2,... \) and monitor the cost \(\Lambda \)
(For each \(k \), you have to average over multiple runs, due to the randomness of the initialization.)

Increasing \(k \) will always decrease the best achievable \(\Lambda \). But gains are bigger until you discover the true \(k \). After that, you will only split clusters into two.

Strength:
- Easy to implement
- fast for small \(k \)
- easily parallelizable

Limitations:
- sensitive to outliers
- slow for large \(k \)
- assumes all clusters are spherical
- makes only hard cluster assignments

Generalization: Gaussian Mixture Model (GMM)

Each cluster becomes a Gaussian \(N(\mu_i, \Sigma_i) \)

Almost the same as k-means, but each point has a distribution over clusters \(\pi_i \): \(\forall x \in \mathbb{R}^d \):

\[
\pi_i \sim \frac{p(x_i | \mu_i, \Sigma_i)}{\sum_{j} p(x_i | \mu_j, \Sigma_j)}
\]

\[
\mu_i \sim \frac{1}{\pi_i} \sum_{x_i} x_i
\]

\[
\Sigma_i \sim \frac{1}{\pi_i} \sum_{x_i} (x_i - \mu_i)(x_i - \mu_i)^T
\]

E-Step

Strengths:
- more flexible than k-means
- probabilities tell you how well a sample fits into clusters

Weaknesses:
- slower than k-means
- can suffer from singularity (single point clustering)
DBSCAN: 1. Connect each point with all neighbors within ε-radius.

(Density based spatial clustering with noise)
Ester et al. 1996

Assumption:
- Clusters have similar density
- Similar points share clusters

- **Core point**
- **Non-core point**
- **ε-neighbor**
- **ε-neighbor**

Repeat:
- Start with random unassigned core-point.
- Assign it to a new cluster ID k.
- Until no longer possible:
 - Assign all core points with a core point neighbor in cluster k also to k.
 - Assign all non-core points with a core point neighbor in cluster k to k.
 - Assign all non-core points without core point neighbor as noise.

Apply DBSCAN on the current network graph.