The \textit{k-NN} classifier

\textbf{Assumption:} Similar points share similar labels

\textbf{Classification Rule:} For a test input x_t, assign the most common label among its k most similar training inputs.

Formally: $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ training data. Test point x_t.

Let $S_k \subseteq D$ such that $|S_k| = k$

and $\forall (x, y) \in D \setminus S_k \\text{ dist}(x, x_t) = \max_{(x', y') \in S_k} \text{ dist}(x', x_t)$

$h(x) = \text{ mode } \{y : (x, y) \in S_k\}$

\textbf{Protip:} In case of a draw decide by reducing k by 1, until you reach a unique mode.

\textbf{Training Error:} Leave-One-Out (LOO) estimate: Take each training point out and estimate its label, pretending it was a test point. (i.e. a point cannot be its own neighbor)

What distance function should we use?

- Common choice: Minkowski's distance: $\text{ dist}(x, x') = \left(\sum_{i=1}^{n} |x_i - x'_i|^p \right)^{\frac{1}{p}}$ for $p \geq 0$
 - special case: $p = 2 \leftarrow \text{ Euclidean distance}$
 - $p = 1 \leftarrow \text{ Manhattan distance}$

\textbf{Quiz:} What if $p \to 0$ or $p \to \infty$? How does k affect the outcome? How does the classifier behave as $k = 1$, or $k = n$?

\textbf{Bayes Optimal Classifier}

Your data D is drawn from some distribution $(x, y) \sim P(x, y)$. Also: $P(x, y) = P(y|x)P(x)$

Assume you knew $P(y|x)$ (you never do, but just for the sake of the argument).

For some test x what label would you predict?

The most likely label: $h_{\text{opt}}(x) = \arg \max_y P(y|x)$

What is the expected error of the BOC? Let $y^* = h_{\text{opt}}(x)$

$E = P(y^* \neq y)$

You can never do better than the BOC!
Asymptotic error bound for 1-NN (Cover and Hart 1967)

Quiz 1: You have a coin that shows head with probability \(p \).
If you throw it twice, what is the probability \(q \) that both throws lead to different outcomes?

2. Show that \(q \leq 2(1-p) \)

Back to 1-NN. We want to prove that the expected 1-NN test error is less than 2 \(\times \) the BOC error, as \(n \to \infty \). (For binary classification)

Argument: Let \(x \) be the test point and \(\hat{z} \) be its nearest neighbor.

Claim 1: As \(n \to \infty \), \(\text{dist}(x, \hat{z}) \to 0 \) \(\Leftarrow \) i.e. The nearest neighbor becomes infinitely close.

Claim 2: As \(\text{dist}(x, \hat{z}) \to 0 \), \(\hat{z} \to x \) \(\Leftarrow \) i.e. In fact, the nearest neighbor becomes identical to \(x \). (See Cover & Hart for proof.)

Assume for \(x \), the label \(y^* \) is most likely. Let \(p = P(y^* | x) \).
The BOC would predict \(y^* \) and be wrong with probability \(\epsilon_{\text{BOC}} = 1-p \).
What is the error of 1-NN as \(n \to \infty \)?

1-NN is wrong if the labels of \(x \) and \(\hat{z} \) are different.
By claim 2, we have \(\hat{z} \to x \). And \(p(y^* | x) = P(y^* | \hat{z}) = p \).
Both points \(x \) and \(\hat{z} \) could take on label \(y^* \) with prob. \(p \), and not with \(1-p \).
Remember Quiz 2. Regard both points as the same coin tossed twice.
They disagree with probability \(2p(1-p) \leq 2(1-p)^2 = 2\epsilon_{\text{BOC}} \)

\[\Rightarrow \epsilon_{\text{1-NN}} \leq 2\epsilon_{\text{BOC}} \text{ as } n \to \infty \]
Curse of Dimensionality

Assume $x \in [0,1]^d$ (i.e., the d-dimensional unit hypercube). All data is drawn uniformly at random. Let $k=10$. Let l be the edge length of the smallest hypercube that contains all k nearest neighbors of a test point x.

$$l^d = \frac{k}{n} \Rightarrow l = \left(\frac{k}{n}\right)^{\frac{1}{d}}$$

Almost the entire space is needed to fit 10 nearest neighbors.

If $n=1000$ how big is l^2?

<table>
<thead>
<tr>
<th>d</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.00</td>
<td>0.01</td>
<td>0.015</td>
<td>0.02</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>1000</td>
<td>0.02</td>
<td>0.04</td>
<td>0.06</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Almost the entire space is needed to fit 10 nearest neighbors.

This means nearest neighbors are not similar, violating the k-NN assumption!

How many points would we need for l to be small?

Fix $l = 0.1$.

$$l^d = \frac{k}{n} \Rightarrow n = k \left(\frac{l}{k}\right)^d = k \left(\frac{1}{10}\right)^d \left(\frac{10}{d}\right)^d \left(\frac{1}{10}\right)^d \text{ grows exponentially with } d!$$

Rescue to the curse:

Data can have structure:

- Data can lie on intrinsically low dimensional subspaces or sub-manifolds.
- Data can be clustered (very non-uniform).