Sequence Model
Announcements

1. Makeup exam Dec 11

2. We will release the last reading quiz today
Recap on Convolutional neural network

Learned feature representations in CNN

Edges	Textures	Patterns	Parts	Objects
[Image of Edges] | [Image of Textures] | [Image of Patterns] | [Image of Parts] | [Image of Objects]

[https://distill.pub/2017/feature-visualization/]
Objective today

Understanding neural network structures that are suitable for natural language (i.e., sequences of words)
Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model
Example: autocompletion

e.g., I went to the climbing gym and I ___
Example: autocompletion

e.g., I went to the climbing gym and I ___

A Language model is a conditional probability model:
Example: autocompletion

e.g., I went to the climbing gym and I ___

A Language model is a conditional probability model:

\[y_1 \sim P(Y = \cdot \mid x_1, \ldots, x_n) \in \mathbb{R}^{100k} \]
Example: autocompletion

e.g., I went to the climbing gym and I ___

A Language model is a conditional probability model:

\[y_1 \sim P(Y = \cdot \; x_1, \ldots, x_n) \in \mathbb{R}^{100k} \]

\[y_2 \sim P(Y = \cdot \; x_1, \ldots, x_n, y_1) \]
Example: autocompletion

e.g., I went to the climbing gym and I ___

A Language model is a conditional probability model:

\[y_1 \sim P(Y = \cdot x_1, \ldots, x_n) \in \mathbb{R}^{100k} \]

\[y_2 \sim P(Y = \cdot x_1, \ldots, x_n, y_1) \]

\[y_m \sim P(Y = \cdot x_1, \ldots, x_n, y_1, \ldots y_{m-1}) \]
Word to Vector Embedding

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I
Word to Vector Embedding

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I

Size of the English vocabulary (e.g., 100k)

Embedding matrix

128
Word to Vector Embedding

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I

\[u_I \in \mathbb{R}^{128} \]

Size of the English vocabulary (e.g., 100k)

Embedding matrix
Word to Vector Embedding

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I

\[u_I \in \mathbb{R}^{128} \quad \text{and} \quad u_{went} \in \mathbb{R}^{128} \]

Size of the English vocabulary (e.g., 100k)

Embedding matrix
Word to Vector Embedding

ML models only take vectors of real numbers as inputs...

e.g., I went to the climbing gym and I

\[
\begin{align*}
u_l & \in \mathbb{R}^{128} \\
u_{went} & \in \mathbb{R}^{128} \\
u_{and} & \in \mathbb{R}^{128} \\
u_l & \in \mathbb{R}^{128}
\end{align*}
\]

Size of the English vocabulary (e.g., 100k)

<table>
<thead>
<tr>
<th>128</th>
<th>...</th>
</tr>
</thead>
</table>

Embedding matrix
Positional embedding

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

\[u_{\text{transformer}} \in \mathbb{R}^{128} \]
Positional embedding

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies
Positional embedding

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

\[u_{\text{transformer}} \in \mathbb{R}^{128} \]
\[+ p_4 \in \mathbb{R}^{128} \]
\[u_{\text{transformer}} + p_{13} \in \mathbb{R}^{128} \]

Create positional embedding using sin functions
Positional embedding

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

\[u_{\text{transformer}} \in \mathbb{R}^{128} \]
\[+ p_4 \in \mathbb{R}^{128} \]

Create positional embedding using sin functions

\[p_t = \begin{bmatrix} \sin(t/c_1) \\ \sin(t/c_2) \\ \vdots \\ \sin(t/c_{128}) \end{bmatrix} \]
Positional embedding

Order of the words and their positions matter...

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

\[u_{\text{transformer}} \in \mathbb{R}^{128} \]
\[u_{\text{transformer}} + p_{13} \in \mathbb{R}^{128} \]

Create positional embedding using sin functions

\[p_t = \begin{bmatrix} \sin(t/c_1) \\ \sin(t/c_2) \\ \vdots \\ \sin(t/c_{128}) \end{bmatrix} \]

Low frequency

High frequency
We turn words into vectors of real numbers

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

\[u_{\text{transformer}} + p_4 \]

\[u_{\text{transformer}} + p_{13} \in \mathbb{R}^{128} \]
We turn words into vectors of real numbers

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

\[u_{\text{transformer}} + p_4 \]

\[u_{\text{transformer}} + p_{13} \in \mathbb{R}^{128} \]

Feature of the word + feature of the position
Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model
e.g., When I say Transformer in ML, I do not mean the transformer in the movies.

 e.g., When I say Transformer, I literally mean the transformer in the movies.
Motivation

e.g., When I say Transformer in ML, I do not mean the transformer in the movies

e.g., When I say Transformer, I literally mean the transformer in the movies

Contextual feature: feature of a word should depend on the context around it
Self-attention

I went to the climbing gym

Word-2-vec + positional

$x_1 \downarrow x_2 \downarrow x_3 \downarrow x_4 \downarrow x_5 \downarrow x_6 \in \mathbb{R}^{128}$
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

\(W_q, W_k, W_v \)
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

\[W_q, W_k, W_v \]

Query \(q = W_q x \) key \(k = W_k x \) value \(v = W_v x \)
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

\[W_q, W_k, W_v \]

\[q = W_q x \quad k = W_k x \quad v = W_v x \]

Query key value
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head:
three matrices:

W_q, W_k, W_v

$q = W_q x$
$k = W_k x$
$v = W_v x$

Query key value

(q_1, k_1, v_1)
$q_1 = W_q x_1$
$k_1 = W_k x_1$
$v_1 = W_v x_1$

(q_5, k_5, v_5)
(q_6, k_6, v_6)
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

\[W_q, W_k, W_v \]

\[q = W_q x \quad k = W_k x \quad v = W_v x \]

Query key value
Self-attention

I went to the climbing gym

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>x_4</th>
<th>x_5</th>
<th>x_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_1, k_1, v_1)</td>
<td>(q_5, k_5, v_5)</td>
<td>(q_6, k_6, v_6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Attention head:
three matrices:

W_q, W_k, W_v

$q = W_q x\quad k = W_q x\quad v = W_q x$

Query key value
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

\[W_q, W_k, W_v \]

Query key value

\[q = W_q x \quad k = W_q x \quad v = W_q x \]
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head:
three matrices:

\[W_q, W_k, W_v \]

\[q = W_q x \quad k = W_q x \quad v = W_q x \]

Query key value
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

W_q, W_k, W_v

$q = W_q x \quad k = W_q x \quad v = W_q x$

Query key value

Attention heads:

$(q_1, k_1, v_1) \quad (q_6, k_6, v_6) \quad (q_5, k_5, v_5)$

$k_1^T q_5 \quad \ldots \quad k_i^T q_5 \quad \ldots \quad k_6^T q_5$
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

\[W_q, \ W_k, \ W_v \]

\[q = W_q x \quad k = W_q x \quad v = W_q x \]

Query key value

Query \(k_i^T q \) to value \(v \) via

\[\text{Softmax: } \]

\[p_i = \frac{\exp(k_i^T q)}{\sum_{j=1}^{6} \exp(k_j^T q)} \]

\[\sum_{i=1}^{6} p_i = 1 \]
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head:
three matrices:

W_q, W_k, W_v

$q = W_qx \quad k = W_qx \quad v = W_qx$

Query key value

$\text{Softmax: } p_{i,5} = \exp(k_i^T q_5) / \sum_{j=1}^{6} \exp(k_j^T q_5)$

$k_i^T q_5 \rightarrow \infty$

$p_{i,j} \rightarrow 1$
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head: three matrices:

\[W_q, W_k, W_v \]

Query \quad key \quad value

\[q = W_q x \quad k = W_q x \quad v = W_q x \]

Softmax:

\[p_{i,5} = \exp(k_i^T q_5) / \sum_{j=1}^{6} \exp(k_j^T q_5) \]

\[p_{1,5}, p_{2,5}, \ldots, p_{6,5} \in \mathbb{R}^6 \]
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head:
three matrices:

\[W_q, W_k, W_v \]

Query key value

Query: \(q = W_q x \)
Key: \(k = W_q x \)
Value: \(v = W_q x \)

Softmax:

\[p_{i,5} = \exp(k_i^T q_5) / \sum_{j=1}^{6} \exp(k_j^T q_5) \]

\[p_{1,5}, p_{2,5}, \ldots, p_{6,5} \]

\[x'_5 = p_{1,5}v_1 + p_{2,5}v_2 + \ldots + p_{6,5}v_6 \]
Self-attention

I went to the climbing gym

Word-2-vec + positional

Attention head:
three matrices:

\[W_q, W_k, W_v \]

\[q = W_q x \quad k = W_q x \quad v = W_q x \]

Query key value

\[(q_1, k_1, v_1) \quad (q_5, k_5, v_5) \quad (q_6, k_6, v_6) \]

\[k_i^T q_5 \quad \ldots \quad k_i^T q_5 \quad \ldots \quad k_6^T q_5 \]

Softmax:

\[p_i,5 = \exp(k_i^T q_5) / \sum_{j=1}^{6} \exp(k_j^T q_5) \]

Self-attention layer

\[p_{1,5}, p_{2,5}, \ldots, p_{6,5} \]

\[x'_5 = p_{1,5} v_1 + p_{2,5} v_2 + \ldots + p_{6,5} v_6 \]
Multi-head self-attention

I went to the climbing gym

Word-2-vec + positional

$x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow x_6$

Self-attention layer (W_q, W_k, W_v)

$x_1' \rightarrow x_2' \rightarrow x_3' \rightarrow x_4' \rightarrow x_5' \rightarrow x_6'$
Multi-head self-attention

I went to the climbing gym

Word-2-vec + positional

Self-attention layer \((W'_q, W'_k, W'_v)\)

Self-attention layer \((W_q, W_k, W_v)\)
Multi-head self-attention

I went to the climbing gym

Word-2-vec + positional

Self-attention layer \((W_q', W_k', W_v')\)

Self-attention layer \((W_q, W_k, W_v)\)

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
 x_5 \\
 x_6
\end{bmatrix}
\]
I went to the climbing gym

Word-2-vec + positional

Multi-head self-attention

Self-attention layer \((W'_q, W'_k, W'_v)\)

Self-attention layer \((W_q, W_k, W_v)\)
Summary so far

I went to the climbing gym

Word-2-vec + positional

Multi-head Self-attention layer \((W^i_q, W^i_k, W^i_v)_{i=1}^3 \)

Contextual features: e.g., \(x'_4 \) encodes information from all words
Outline today

1. Word-2-Vec embedding and positional embedding

2. Attention model

3. Putting things together: the Transformer model
The Transformer model: encoder

I went to the climbing gym

Word-2-vec + positional

Mutt-head Self-attention layer \((W_q^i, W_k^i, W_v^i)_{i=1}^3\)
The Transformer model: encoder

I went to the climbing gym

Word-2-vec + positional

Mutt-head Self-attention layer \((W_q^i, W_k^i, W_v^i)_{i=1}^{3}\)
The Transformer model: encoder

I went to the climbing gym

Word-2-vec + positional

Mutt-head Self-attention layer \((W^q_i, W^k_i, W^v_i)_{i=1}^3\)
The Transformer model: encoder

I went to the climbing gym

Word-2-vec + positional

Mutt-head Self-attention layer \((W^j, W^k, W^v)^i_{i=1}\)

\[x_1' + x_1 \quad x_2' + x_2 \quad x_3' + x_3 \quad x_4' + x_4 \quad x_5' + x_5 \quad x_6' + x_6 \]

FC FC FC FC FC FC

\[\text{relu Two layer} \quad \text{Fully-connected} \]
The Transformer model: encoder

I went to the climbing gym

Word-2-vec + positional

Mutt-head Self-attention layer \((W_q^i, W_k^i, W_v^i)_{i=1}^3\)

\[
x_1' \rightarrow x_1 \quad x_2' \rightarrow x_2 \quad x_3' \rightarrow x_3 \quad x_4' \rightarrow x_4 \quad x_5' \rightarrow x_5 \quad x_6' \rightarrow x_6
\]

\[
x_1 + x_1' \quad x_2 + x_2' \quad x_3 + x_3' \quad x_4 + x_4' \quad x_5 + x_5' \quad x_6 + x_6'
\]

FC FC FC FC FC FC

x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6
The Transformer model: encoder

I went to the climbing gym

Word-2-vec + positional

Mutt-head Self-attention layer \((W^{ij}, W^{ik}, W^{iv})_{i=1}^{3}\)

Layer 1
The Transformer model: encoder

I went to the climbing gym

Word-2-vec + positional

Mutt-head Self-attention layer \((W^i_q, W^i_k, W^i_v)_{i=1}^3\)

\[x_1' + x_1, x_2' + x_2, x_3' + x_3, x_4' + x_4, x_5' + x_5, x_6' + x_6\]

Layer 1

\[x_1, x_2, x_3, x_4, x_5, x_6\]
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

x_1 x_2 x_3 x_4 x_5 x_6
I went to the climbing gym
and I trained
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

$u_1, u_2, u_3 \in \mathbb{R}^{d_w}$
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

\[u_1 \quad u_2 \quad u_3 \]

cross-attention \((W_q, W_k, W_v)\)
The Transformer model: decoder

I went to the climbing gym

and I trained

Word2vec + positional

Transformer Encoder

\[k_1, v_1 k_2, v_2 k_3, v_3 k_4, v_4 k_5, v_5 k_6, v_6 \]

\[K = W_k \cdot x, V = W_v \cdot x \]

cross-attention \((W_q, W_k, W_v) \)
I went to the climbing gym

and I trained

Word2vec + positional

$q_1 = W_q u_1$

cross-attention (W_q, W_k, W_v)
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

\[q_1 = W_q u_1 \]

\[x_7 = \sum_{i=1}^{6} p_i v_i \]

cross-attention \((W_q, W_k, W_v)\)
The Transformer model: decoder

I went to the climbing gym

and I trained

Word2vec + positional

Transformer Encoder

u_1, u_2, u_3

cross-attention (W_q, W_k, W_v)
The Transformer model: decoder

I went to the climbing gym

and I trained

Transformer Encoder

u_1 u_2 u_3

k_7, v_7

$k_7 = W_k u_1$

$v_7 = W_v u_1$

cross-attention (W_q, W_k, W_v)
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

cross-attention \((W_q, W_k, W_v)\)
The Transformer model: decoder

I went to the climbing gym

and I trained

Word2vec + positional

\begin{align*}
q_3 &= W_q u_3 \\
x_8 &= \sum_{i=1}^{7} p_i v_i
\end{align*}

cross-attention \((W_q, W_k, W_v)\)
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

\[q_3 = W_q u_3 \]
\[x_8 = \sum_{i=1}^{7} p_i v_i \]

Note: we do not pay attention to future words
The Transformer model: decoder

I went to the climbing gym

and I trained

Word2vec + positional
I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

Multi-head cross-attention

\[(W_q^i, W_k^i, W_v^i)_{i=1}^3\]

+residual connection and FC
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

Word2vec + positional

Multi-head cross-attention

$$(W_q^i, W_k^i, W_v^i)_{i=1}^3$$

+residual connection and FC

and I trained

$\times N$

$N=6$
The Transformer model: decoder

I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

Multi-head cross-attention

\((W^i_q, W^i_k, W^i_v)_{i=1}^3\)

+residual connection and FC

\(\times N\)

\(x_1, x_2, x_3, x_4, x_5, x_6\)

\(x_7, x_8, x_9\)
The Transformer model: decoder

I went to the climbing gym

and I trained

Word2vec + positional

Multi-head cross-attention

$(W^i_q, W^i_k, W^i_v)_{i=1}^3$ + residual connection and FC

$\times N$

x_7, x_8, x_9

Linear classifier w/ 100k labels
The Transformer model: decoder

I went to the climbing gym

and I trained

Word2vec + positional

Multi-head cross-attention

$\left(W_q^i, W_k^i, W_v^i \right)_{i=1}^{3}$

+ residual connection and FC

x_7, x_8, x_9

Linear classifier w/ 100k labels

$\{ p_1, p_2, \ldots, p_{100k} \}$
I went to the climbing gym

Transformer Encoder

and I trained

Word2vec + positional

Multi-head cross-attention

$(W_q^i, W_k^i, W_v^i)_{i=1}^3$

+residual connection and FC

x_7, x_8, x_9

Linear classifier w/ 100k labels

$\{p_1, p_2, \ldots, p_{100k}\} \sim$ really
The Transformer model: decoder

I went to the climbing gym

and I trained really hard

Transformer Encoder

Word2vec + positional

Multi-head cross-attention

W^i_q, W^i_k, W^i_v $i=1$ +residual connection and FC

x_7, x_8, x_9

Linear classifier w/ 100k labels

$\{p_1, p_2, \ldots, p_{100k}\} \sim$ really

$x_1, x_2, x_3, x_4, x_5, x_6$
Take home task:

Check out the the original paper (not too hard to read!)