Ensemble Methods:
Bagging & Random Forest
Recap on Decision (Regression) Tree

Regression dataset $\mathcal{D} = \{x_i, y_i\}_{i=1}^n, \ (x_i, y_i) \sim P$
Issues of Decision Trees

Decision Tree can have high variance, i.e., overfilling!
Common regularizations in Decision Trees

1. Minimum number of examples per leaf
 No split if # of examples < threshold

2. Maximum Depth
 No split if it hits depth limit

3. Maximum number of nodes
 Stop the tree if it hits max # of nodes
Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest
Variance Reduction via Averaging

Consider i.i.d random variables \(\{x_i\}_{i=1}^{n} \), \(x_i \sim \mathcal{N}(0,\sigma^2) \)

\[
\text{Var}(x_i) = \sigma^2
\]

Q: what is the variance of \(\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n} \)

Avg significantly reduced variance!
Variance Reduction via Averaging

Consider (possibly correlated) random variables \(\{x_i\}_{i=1}^n \), \(x_i \sim \mathcal{N}(0,\sigma^2) \)

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{bmatrix} \sim \mathcal{N}
\begin{pmatrix}
 0, \\
 \sigma^2 \\
 \sigma^2, \\
 \sigma^2 \\
\end{pmatrix}
\]

Q: what is the variance of \(\bar{x} = \sum_{i=1}^{3} x_i/3 \)

A: \(\text{Var}(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9 \)

Worst case: when these RVs are positively correlated, averaging may not reduce variance
Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest
Why Bagging

Consider train Decision Tree, i.e., $\hat{h} = \text{ID3}(\mathcal{D})$

\hat{h} is a random quantity + it has high variance

Q: can we learn multiple \hat{h} and perform averaging to reduce variance?

Yes, we do this via Bootstrap
Detour: Bootstrapping

Consider dataset $\mathcal{D} = \{z_i\}_{i=1}^n$, $z_i \sim P$

Let us approximate P with the following discrete distribution:

$$\hat{P}(z_i) = 1/n, \forall i \in [n]$$
Bootstrapping

\[\hat{P}(z_i) = 1/n, \forall i \in [n] \]

Why \(\hat{P} \) can be regarded as an approximation of \(P \)?

1. We can use \(\hat{P} \) to approximate \(P \)'s mean and variance, i.e.,

\[
\mathbb{E}_{z \sim \hat{P}}[z] = \frac{1}{n} \sum_{i=1}^{n} z_i \rightarrow \mathbb{E}_{z \sim P}[z] \\
\mathbb{E}_{z \sim \hat{P}}[z^2] = \frac{1}{n} \sum_{i=1}^{n} z_i^2 \rightarrow \mathbb{E}_{z \sim P}[z^2]
\]

2. In fact for any \(f : Z \rightarrow \mathbb{R} \)

\[
\mathbb{E}_{z \sim \hat{P}}[f(z)] = \frac{1}{n} \sum_{i=1}^{n} f(z_i) \rightarrow \mathbb{E}_{z \sim P}[f(z)]
\]
Bootstrapping

\[\hat{P}(z_i) = \frac{1}{n}, \forall i \in [n] \]

Bootstrap: treat \(\hat{P} \) as if it were the ground truth distribution \(P \)!

Now we can draw as many samples as we want from \(\hat{P} \)!

Q: What’s the procedure of drawing \(n \) i.i.d samples from \(\hat{P} \)?

A: sample uniform randomly from \(\hat{P} \) \(n \) times \textbf{w/ replacement}

Q: after \(n \) samples, what’s the probability that \(z_1 \) never being sampled?

A: \((1 - \frac{1}{n})^n \rightarrow \frac{1}{e}, n \rightarrow \infty \)
Bagging: Bootstrap Aggregation

Consider dataset \(\mathcal{D} = \{x_i, y_i\}_{i=1}^n \), \((x_i, y_i) \sim P, x_i \in \mathbb{R}^d, y_i \in \{-1, 1\} \)

1. Construct \(\hat{P} \), s.t., \(\hat{P}(x_i, y_i) = 1/n \), \(\forall i \in [n] \)
2. Treat \(\hat{P} \) as the ground truth, draw \(k \) datasets \(\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_k \) from \(\hat{P} \)
3. For each \(i \in [k] \), train classifier, e.g., \(\hat{h}_i = \text{ID3}(\mathcal{D}_i) \)
4. Averaging / Aggregation, i.e., \(\bar{h} = \frac{1}{k} \sum_{i=1}^{k} \hat{h}_i \)

The step that reduces Var!

Bootstrapped samples
Bagging in Test Time

Given a test example x_{test}

We can use $\{\hat{h}_i\}_{i=1}^k$ to form a distribution over labels:

$$\hat{y} = \begin{bmatrix} p \\ 1 - p \end{bmatrix}$$

where:

$$p = \frac{\text{# of trees predicting} + 1}{k}$$
Bagging reduces variance

\[\bar{h} = \frac{1}{k} \sum_{i=1}^{k} \hat{h}_i \]

What happens when \(k \to \infty \)?

\[\bar{h} \to \mathbb{E}_{\mathcal{D} \sim \hat{P}} \left[\text{ID3}(\mathcal{D}) \right] \]

\(\hat{P} \to P \), when \(n \to \infty \)

\[\mathbb{E}_{\mathcal{D} \sim P} \left[\text{ID3}(\mathcal{D}) \right] \]

The expected decision tree (under true \(P \))

Deterministic, i.e., zero variance
Outline of Today

1. Variance Reduction using averaging

2. Bagging: Bootstrap Aggregation

3. Random Forest
Motivation of Random Forest

Consider any two hypothesis \hat{h}_i, \hat{h}_j, $i \neq j$ in Bagging

\hat{h}_j, \hat{h}_i are not independent under true distribution P

e.g., $\mathcal{D}_i, \mathcal{D}_j$ have overlap samples

Recall that: $\text{Var}(\bar{x}) = \sigma^2/3 + \sum_{i \neq j} \sigma_{i,j}/9$

To avoid positive correlation, we want to make \hat{h}_i, \hat{h}_j as independent as possible
Random Forest

Key idea:
In ID3, for every split, randomly select \(k \) \((k < d)\) many features, find the split only using these \(k \) features.

Regular ID3: looking for split in all \(d \) dimensions
ID3 in RF: looking for split in \(k \) randomly picked dimensions
Benefit of Random Forest

By always randomly selecting subset of features for every tree, and every split:

We further reduce the correlation between \hat{h}_i & \hat{h}_j.
Demo of Random Forest

- DT w/ Depth 10
- RF w/ 2 trees
- RF w/ 5 trees
- RF w/ 10 trees
- RF w/ 20 trees
- RF w/ 50 trees
Summary for today

An approach to reduce the variance of our classifier:

1. Create datasets via bootstrapping + train classifiers on them + averaging

2. To further reduce correlation between classifiers, RF randomly selects subset of dimensions for every split.