Clustering & the K-means algorithm
Announcements:

1. HW1 is out, due Sep 12

2. P1 will be out this afternoon

3. CIS partner finding social: this Friday 4-6, Gates 01
Recap

The K-NN algorithm

Example: 3-NN with Euclidean distance on a binary classification data
Recap

T/F: We can use train-validation trick to determine the parameter K

T/F: in worst case, number of training example should scale in \(\exp(d) \) for K-NN to succeed

T/F: K-NN will fail when feature dimension is high
Objective

Understand the K-means algorithm and why it works
Outline for Today

1. Unsupervised Learning: Clustering

2. The K-means algorithm

3. Convergence of K-means
What is clustering?

It is an **unsupervised learning** procedure (i.e., applies to data without ground truth labels)
Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)
Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

A point cloud from a Lidar sweep (4-d data)

Different color represents different clusters
Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label

3. Fit Bounding Boxes

These boxes are the pseudo-labels we use to train detector

Different color represents different clusters
Usage of clustering algorithms in real world

Example: Learning to detect cars without ground truth label
Outline for Today

1. Unsupervised Learning: Clustering

2. the K-means algorithm

3. Convergence of K-means
The K-means algorithm

Input $\mathcal{D} = \{x_1, \ldots, x_n\}, x_i \in \mathbb{R}^d$, parameters K

$d(x, x') = \|x - x'\|_2$
The K-means algorithm

Input $\mathcal{D} = \{x_1, \ldots, x_n\}, x_i \in \mathbb{R}^d$, parameters K

Expected output: K centroids $\{\mu_1, \mu_2, \ldots, \mu_k\}, \mu_i \in \mathbb{R}^d$, and K clusters C_1, \ldots, C_K
The K-means algorithm

Input $\mathcal{D} = \{x_1, \ldots, x_n\}, x_i \in \mathbb{R}^d$, parameters K

Expected output: K centroids $\{\mu_1, \mu_2, \ldots, \mu_k\}, \mu_i \in \mathbb{R}^d$, and K clusters C_1, \ldots, C_K

The data assignment procedure:
The K-means algorithm

Input $\mathcal{D} = \{x_1, \ldots, x_n\}, x_i \in \mathbb{R}^d$, parameters K

Expected output: K centroids $\{\mu_1, \mu_2, \ldots, \mu_k\}, \mu_i \in \mathbb{R}^d$, and K clusters C_1, \ldots, C_K

The data assignment procedure:

If we had K centroids, we could split the dataset into K clusters, C_1, \ldots, C_K, by assigning each data point to its nearest centroid.
The K-means algorithm

Input $\mathcal{D} = \{x_1, \ldots, x_n\}, x_i \in \mathbb{R}^d$, parameters K

Expected output: K centroids $\{\mu_1, \mu_2, \ldots, \mu_k\}, \mu_i \in \mathbb{R}^d$, and K clusters C_1, \ldots, C_K

The data assignment procedure:

If we had K centroids, we could split the dataset into K clusters, C_1, \ldots, C_K, by assigning each data point to its nearest centroid

$$C_i = \{x \in \mathcal{D} \text{ s.t., } \mu_i \text{ is the closest centroid to } x\}$$
The data assignment procedure

K centroids μ_1, \ldots, μ_k splits the space into a voronoi diagram
The centroid computation procedure
The centroid computation procedure

If we magically had the clusters \(C_1, \ldots, C_K\), we could compute centroids as follows:

\[
\mu_i = \frac{\sum_{x \in C_i} x}{|C_i|}
\]

\(|C_i|\) = \# of elements in set \(C_i\)

\(\mu_i\) : the mean of the data in \(C_i\)
The K-means algorithm

Iterate between Centroid computation and Data Assignment!
The K-means algorithm

Iterate between Centroid computation and Data Assignment!

Initialize K clusters C_1, C_2, \ldots, C_K, where $\bigcup_{i=1}^{K} C_i = \mathcal{D}$, and $C_i \cap C_j = \emptyset$, for $i \neq j$
The K-means algorithm

Iterate between Centroid computation and Data Assignment!

Initialize K clusters \(C_1, C_2, \ldots, C_K\), where \(\bigcup_{i=1}^{K} C_i = \mathcal{D}\), and \(C_i \cap C_j = \emptyset\), for \(i \neq j\)

Repeat until convergence:
The K-means algorithm

Initialize K clusters C_1, C_2, \ldots, C_K, where $\bigcup_{i=1}^{K} C_i = \mathcal{D}$, and $C_i \cap C_j = \emptyset$, for $i \neq j$

Repeat until convergence:

1. centroids computation using C_1, \ldots, C_K, i.e., for all i,

 $\mu_i = \sum_{x \in C_i} x / |C_i|$ (i.e., the mean of the data in C_i)

Iterate between Centroid computation and Data Assignment!
The K-means algorithm

Initialize K clusters C_1, C_2, \ldots, C_K, where $\bigcup_{i=1}^{K} C_i = \mathcal{D}$, and $C_i \cap C_j = \emptyset$, for $i \neq j$

Repeat until convergence:

1. Centroids computation using C_1, \ldots, C_K, i.e., for all $i,$
 $\mu_i = \sum_{x \in C_i} x / |C_i|$ (i.e., the mean of the data in C_i)

2. The data assignment procedure, i.e., re-split data into C_1, \ldots, C_K, using μ_1, \ldots, μ_k
The K-means algorithm
The K-means algorithm
The K-means algorithm
The K-means algorithm
Let’s try out K-means!
Outline for Today

1. Unsupervised Learning: Clustering

2. The K-means algorithm

3. Convergence of K-means
Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution
Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution

Given any K disjoint groups C_1, C_2, \ldots, C_K, and any K centroids, define a loss function:

$$
\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]
$$
Does K-means algorithm converge?

Yes, though it does not guarantee to return the globally optimal solution.

Given any K disjoint groups C_1, C_2, \ldots, C_K, and any K centroids, define a loss function:

$$
\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]
$$

Total distance of points in C_i to μ_i
K-means as a Coordinate Descent Algorithm

\[\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right] \]
K-means as a Coordinate Descent Algorithm

\[\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right] \]

K-means minimizes \(\ell \) in an alternating fashion:
K-means as a Coordinate Descent Algorithm

\[\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \sum_{x \in C_i} \|x - \mu_i\|_2^2 \]

K-means minimizes \(\ell \) in an alternating fashion:

Q1: w/ \(C_1, \ldots, C_K \) fix, what is \(\arg \min_{\mu_1, \ldots, \mu_k} \ell(\{C_i\}, \{\mu_i\})? \)

\[\mu_i = \sum_{x \in \cap C_i} x / |C_i| \]
K-means as a Coordinate Descent Algorithm

\[\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right] \]

K-means minimizes \(\ell \) in an alternating fashion:

Q1: w/ \(C_1, \ldots, C_K \) fix, what is \(\arg \min_{\mu_1, \ldots, \mu_k} \ell(\{C_i\}, \{\mu_i\}) \)?

Q2: w/ \(\mu_1, \ldots, \mu_K \) fix, what is \(\arg \min_{C_1, \ldots, C_k} \ell(\{C_i\}, \{\mu_i\}) \)?
K means is doing Coordinate Descent here

\[\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|^2 \right] \]

K-means Algorithm: (re-stated from a different perspective)

Initialize \(\mu_1, \ldots, \mu_K\)

Repeat until convergence:

...
K means is doing Coordinate Descent here

$$\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

K-means Algorithm: (re-stated from a different perspective)

Initialize μ_1, \ldots, μ_K

Repeat until convergence:

$$C_1, \ldots, C_K = \arg \min_{C_1, \ldots, C_K} \ell(\{C_i\}, \{\mu_i\})$$
K means is doing Coordinate Descent here

\[
\ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]
\]

K-means Algorithm: (re-stated from a different perspective)

Initialize \(\mu_1, \ldots, \mu_K\)

Repeat until convergence:

\[
C_1, \ldots, C_K = \arg \min_{C_1, \ldots, C_k} \ell(\{C_i\}, \{\mu_i\})
\]

\[
\mu_1, \ldots, \mu_K = \arg \min_{\mu_1, \ldots, \mu_K} \ell(\{C_i\}, \{\mu_i\})
\]

fixed
How to pick K?

Given K, we can look at the minimum loss

$$
\ell_K := \min_{C_1, \ldots, C_K, \mu_1, \ldots, \mu_K} \ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]
$$
How to pick K?

Given K, we can look at the minimum loss

$$\ell_K := \min_{C_1, \ldots, C_K, \mu_1, \ldots, \mu_K} \ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

Note that exactly compute the min is NP-hard, but we can approximate it with K-means solutions.
How to pick K?

Given K, we can look at the minimum loss

$$
\ell_K := \min_{C_1, \ldots, C_K, \mu_1, \ldots, \mu_K} \ell(C_i, \mu_i) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]
$$

Note that exactly compute the min is NP-hard, but we can approximate it w/ K-means solutions

Q: Should we just naively pick a K that the ℓ_K is zero?
How to pick K?

Given K, we can look at the minimum loss

$$\ell_K := \min_{C_1, \ldots, C_K, \mu_1, \ldots, \mu_K} \ell(\{C_i\}, \{\mu_i\}) = \sum_{i=1}^{K} \left[\sum_{x \in C_i} \|x - \mu_i\|_2^2 \right]$$

Note that exactly compute the min is NP-hard, but we can approximate it w/ K-means solutions

Q: Should we just naively pick a K that the ℓ_K is zero?

No! When $K = n$, loss is zero (every data point is a cluster!)
How to pick K?
How to pick K?

In practice, we can gradually increase K, and keep track the loss ℓ_K, and stop when ℓ_K does not drop too much.
How to pick K?

In practice, we can gradually increase K, and keep track the loss ℓ_K, and stop when ℓ_K does not drop too much

$$\ell_2 = \sum_{i=1}^{n} \left(\sum_{x \in C_i} ||x - \mu_i||^2 \right)$$
Summary

1. The first Unsupervised Learning Algorithm — K means
 iteratively computes centroids and clusters

2. Relationship between K-means algorithm and the Coordinate descent procedure on loss $\ell(\{C_i\}, \{\mu_i\})$