Impurity

- Gini impurity \(\approx \) how often will random labels disagree
- Entropy \(\approx \) information
- Least squares

ID3

Input: Dataset \(D \)

Search all features:
- search all splits for feature:
 - evaluate impurity (entropy)
pick feature/split that minimizes impurity
construct node
recursively call ID3 on subsets

How to split?

- categorical features \(\rightarrow \) 1 child per category
- real-valued feature \(\rightarrow \) threshold

Base cases: if \(|D| = 1 \)

1. \(\exists \) exists, some \(\hat{x} \) s.t. \(\forall (x,y) \in D, \ x = \hat{x} \)
2. \(\exists \) exists \(\hat{y} \) s.t. \(\forall (x,y) \in D, \ y = \hat{y} \) \(\rightarrow \) leaf \(\hat{y} \)
3. \(|D| = 0 \), predict majority/average of "parent" dataset
Why not stop when impurity doesn't decrease.

\[P_x = \frac{1}{2} \quad P_0 = \frac{1}{2} \]

Decision tree inference time is proportional to depth.

Inference very fast!

Overfitting:

\[\text{bias}^2 + \text{variance} + \text{noise} \]
Ensembling: average the prediction of some models

- draw \(m \) independent datasets \(D_1, \ldots, D_m \)
- for each dataset:
 - run \(IDT \) \(\Rightarrow \) hypothesis \(h_i \)
 - output \(\hat{h}(x) = \frac{1}{m} \sum_{i=1}^{m} h_i(x) \)

How does this effect: bias? variance? noise?

\[
\text{Var} \left(\frac{1}{m} \sum_{i=1}^{m} h_i(x) \right) = \frac{1}{m^2} \text{Var} \left(\sum_{i=1}^{m} h_i(x) \right)
\]

\[
= \frac{1}{m^2} \sum_{i=1}^{m} \text{Var} (h_i(x))
\]

\[
= \frac{1}{m} \cdot m \cdot \text{Var} (h_i(x))
\]

\[
= \frac{1}{m} \text{Var} (h_i(x))
\]
Bootstrap Aggregating

Instead of drawing from source dist, we draw with replacement from D

given D sampled

draw n datasets

draw n datasets from D each of size N

for each, I train a decision tree (T_0)

average: $\hat{h}(x) = \frac{1}{m} \sum_{i=1}^{m} h_i(x)$

still reduces variance!

- idea: individual examples are still i.i.d. dist. distributed according to P

- even though they're not independent, they're "independent enough" to reduce variance.

Random Forest \Rightarrow full algorithm Baggng+Trees