Approx K-NN: No backtrack

Classification and Regression Tree
CART

Goal: build a tree that's
(1) as small as possible, and
(2) only has 1 label per leaf node ("pure" leaves)

NP-Hard.

Idea: split recursively to minimize "impurity" at each node of tree.

Heuristic that measures how "diverse" the labels are in the dataset.
Gini Impurity (Classification)

Empirical distribution of label y

\[P_k = \frac{\left| \{ (x,y) \mid y = k \} \right|}{|\mathcal{D}|} = \frac{\# \text{ of examples w/ label } k}{\# \text{ of examples}}. \]

\[\text{Gini} \implies G(S) = \sum_k P_k (1 - P_k) \]

\# of ways to draw 2 examples with unequal labels

\[\sum_k \sum_{\ell \neq k} \left| \left\{ (x,y) \mid y = k \right\} \cdot \left\{ (x,y) \mid y = \ell \right\} \right| \]

\[= \sum_k \left(\# \text{ with label } k \right) \cdot \left(\frac{n - \left(\# \text{ with label } k \right)}{15} \right) \]

\[= \sum_k \left(\# \text{ with label } k \right) \cdot \left(n - \left(n \cdot P_k \right) \right) = n^2 \sum_k P_k (1 - P_k) \]

\[G^T(S) = \frac{|S_L|}{|S|} G^T(S_L) + \frac{|S_R|}{|S|} G^T(S_R) \]
Entropy.

$P_1 = \frac{1}{2} \quad P_2 = \frac{1}{4} \quad P_3 = P_4 = P_5 = P_6 = \frac{1}{16}$

\[H(S) = \sum_k - P_k \log_2 P_k \]

$H(S)$ is a compact and monotonic function of $D_{KL}(p \parallel q) = \sum_k P_k \log \left(\frac{P_k}{q_k} \right)$

\[H^T(S) = \frac{|S_L|}{|S_L|} \cdot H^T(S_L) + \frac{|S_R|}{|S_L|} \cdot H^T(S_R) \]

\[D_{KL}(p \parallel q) = \sum_k P_k \log \left(\frac{P_k}{q_k} \right) \]

\[D_{KL}(p \parallel \text{uniform}) = \sum_k P_k \log \left(\frac{V_c}{P_k} \right) = \sum_k P_k \log \frac{1}{P_k} - \sum_k P_k \log \frac{1}{V_c} \]
Ball Trees

\[D_a \quad D_b \]

\[X_{test} \quad X_i \quad C \]
Impurity

- Gini impurity ≈ how often will random labels disagree
- Entropy ≈ information
- Least squares

ID3

Input: Dataset D
Search all features:
 search all splits for feature:
 evaluate impurity (entropy)
pick feature/split that minimizes impurity
construct node
recursively call ID3 on subsets

How to split?
- categorical features → 1 child per category
- real-valued features → threshold

Base cases:
1. ∃ x s.t. ∀ (x,y) ∈ D, y = \hat{y} = \bar{x}
2. ∃ y s.t. ∀ (x,y) ∈ D, y = \hat{y} = \text{leaf } \hat{y}
3. |D| = 0, predict majority/average of "parent" dataset
Why not stop when impurity doesn't decrease.

\[P_x = \frac{1}{2} \quad P_0 = \frac{1}{2} \]

Decision tree inference time is proportional to depth.

Inference very fast!

Overfitting:

\[\text{bias}^2 + \text{variance} + \text{noise} \]
Ensembling: average the prediction of some models.

- draw m independent datasets \(D_1, \ldots, D_m \)
- for each dataset:
 - run \(\text{ID} \rightarrow \) hypothesis \(h_i \)
- output \(\hat{h}(x) = \frac{1}{m} \sum_{i=1}^{m} h_i(x) \)

How does this effect: bias² variance noise?

\[
\text{Var} \left(\frac{1}{m} \sum_{i=1}^{m} h_i(x) \right) = \frac{1}{m^2} \text{Var} \left(\sum_{i=1}^{m} h_i(x) \right)
= \frac{1}{m^2} \sum_{i=1}^{m} \text{Var} (h_i(x))
= \frac{1}{m^2} \cdot m \cdot \text{Var} (h_i(x))
= \frac{1}{m} \text{Var} (h_i(x))
\]
Bootstrap Aggregating

Instead of drawing from source dist, we draw with replacement from D.

given D, sample D anew to get dataset D'.

draw m datasets from D each of size n

for each, E train a decision tree (ID3)

average: $h(x) = \frac{1}{m} \sum_{i=1}^{m} h_i(x)$

still reduces variance!

Idea: individual examples are still i.i.d. distributed according to P

- even though they're not independent, they're "independent enough" to reduce variance.

Random Forest \Rightarrow Full algorithm Bagging Trees
General Gradient Boosted Regression Trees

Input: loss l, step size α, CART alg.

Init: $H_0 = 0$, $H_0(x) = 0$

Loop from $t=1:T$

$r_i = l'(H_{t-1}(x); y_i)$ for all $i \in \{1, \ldots, n\}$

$h_t = \text{CART}(\{ (x_i, r_i) | i \in \{1, \ldots, n\} \})$

if $\sum_{i=1}^{n} r_i h(x_i) < 0$:

update ensemble by adding h

$H_T(x) = H_{T-1}(x) + \alpha h(x)$

else:

halt and return H_{T-1}.

end loop

return H_T.

could replace with $l(H_{T-1} + \alpha h) < l(H_{T-1})$
Random Forest

Bagging + CART + Subsampling features

//
// each node searches
// all features & splits
// only search k features at random

- increases "diversity" of trees

Hyper params: k = # of features we search
m = # of datasets/trees = set as large as possible

1. Sample m "bagged" datasets from D
 call D_1, D_2, ..., D_m

2. For each bagged dataset D_i
 run a variant of CART/ID3
 at each split choose k features at random and only consider splitting those
 outputting hypothesis h_i

3. Output random forest classifier/regressor

\[\hat{h}(x) = \frac{1}{m} \sum_{i=1}^{k} h_i(x). \]
Two Variants of RF:

- build tree using one dataset
 and label the leaves with another
 independent dataset
 (prove consistency)

- build smaller trees (not to full depth)
 (pruning)
Boosting vs. Bagging

- sequentially call our tree-building algo, at each step build a tree that improves the example

Goal: create an ensemble classifier/regressor

\[
H_T(x) = \sum_{t=1}^{T} \alpha_t h_t(x) = H_{T-1}(x) + \alpha_T h_T(x)
\]

ensemble after \(T \) steps

\(\alpha \) = scalar weights

\(h_t(x) \) = hypothesis formed at step \(t \)

Goal: minimize loss function

\[
l(H) = \frac{1}{n} \sum_{i=1}^{n} l(H(x_i), y_i)
\]

the hypothesis I pick at step \(T \) is

\[
h_T = \arg \min_{h \in H} \frac{1}{n} \sum_{i=1}^{n} l(H(x_i) + \alpha h(x_i), y_i)
\]

for simplicity, assume α fixed

\[
= \arg \min_{h \in H} \frac{1}{n} \sum_{i=1}^{n} \left[l(H(x_i), y_i) + \alpha \langle h(x_i), \nabla_l (H(x_i), y_i) \rangle \right]
\]

\[
= \arg \min_{h \in H} \frac{1}{n} \sum_{i=1}^{n} \langle h(x_i), \nabla_l (H(x_i), y_i) \rangle
\]
\[
\arg \min_{\text{h} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} h(x_i) \ell'(h(x_i), y_i) \\
= \arg \min_{\text{h} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} h(x_i) \ell(h(x_i), y_i) \\
= \arg \min_{\text{h} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \ell(h(x_i), y_i) \\
\text{let } r_i = \frac{\ell(h(x_i), y_i)}{\ell(h(x_i), y_i)} = \frac{\ell'(h(x_i), y_i)}{\ell(h(x_i), y_i)} \\
= \arg \min_{\text{h} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} h(x_i) \cdot r_i' \\
\text{if this is negative, then } \ell(h_{t+1}) \geq \ell(h_t)
\]

General boosting (a.k.a. "AnyBoost")

1. Assume that hypothesis h has constant
\[
\sum_{i} (h(x_i))^2. \text{ e.g. if } h(x_i) \in \{+1, -1\}, \\
= \arg \min_{\text{h} \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (h(x_i) + r_i)^2 - \frac{1}{2} h(x_i)^2 - \frac{1}{2} r_i^2
\]

\[
a b = \frac{1}{2} (a + b)^2 - \frac{1}{2} a^2 - \frac{1}{2} b^2 \\
t_i = -r_i = -\ell'(h(x_i), y_i)
\]

\[
= \arg \min_{\text{h} \in \mathcal{H}} \frac{1}{2n} \sum_{i=1}^{n} (h(x_i) - (-r_i))^2 \\
\approx \text{CART}(h_{(x_1, t_1)}, (x_2, t_2), ..., (x_n, t_n))
\]
AdaBoost

Assumption: binary classification \((y_i \in \{+1, -1\})\)

\[\Rightarrow\] weak learner also binary \((h_i(x) \in \{+1, -1\})\)

\[\Rightarrow\] "step size" \(\alpha\) set by line search

\[\Rightarrow\] set optimally to minimize loss

loss Exponential loss

\[l(H) = \sum_{i=1}^{n} \exp(-y_i H(x_i))\]

Single ex loss:

\[l(H(x); y) = \exp(-y H(x))\]

\[l'(H(x); y) = -y \exp(-y H(x))\]

Boosting goal:

\[\arg\min_{H(x)} \sum_{i=1}^{n} l'(H(x_i); y_i) - h(x_i)\]

\[= \arg\min_{h} \sum_{i=1}^{n} y_i \exp(-y H(x_i)) - h(x_i)\]

let

\[w_i = \frac{1}{Z} \exp(-y_i H(x_i)),\]

\[Z = \sum_{i=1}^{n} \exp(-y H(x_i))\]

\[= \arg\min_{H(x)} \sum_{i=1}^{n} w_i y_i H(x_i)\]

\[= \arg\min_{h} \sum_{i=1}^{n} w_i y_i H(x_i)\]

\[= \log \sum_{i=1}^{n} w_i y_i H(x_i)\]

\[= \log \exp(-y_i H(x_i))\]

\[= 1 - \sum_{i=1}^{n} w_i\]

\[\text{if } y_i \neq H(x_i)\]

\[\text{if } y_i = H(x_i)\]
arg\ \min_k\ \arg\ \min_h\ \sum_{i \in y \neq h(x_i)} w_i = \arg\ \min_h\ \sum_{i \in y \neq h(x_i)} w_i \exp(-y_i h(x_i)) = \arg\ \min_h\ \sum_{i \in y \neq h(x_i)} w_i \exp(-y_i h(x_i))

Choosing α:

$\alpha = \arg\ \min \sum_{i = 1}^n \exp(-y_i (H(x_i) + \alpha h(x_i)))$

$= \arg\ \min \sum_{i = 1}^n \exp(-y_i H(x_i)) \exp(-y_i h(x_i) \alpha)$

$= \arg\ \min \sum_{i = 1}^n w_i \exp(-y_i h(x_i) \alpha)$

$= \arg\ \min \sum_{i \in y \neq h(x_i)} w_i \exp(-y_i h(x_i) \alpha) + \sum_{i \in y = h(x_i)} w_i \exp(-y_i h(x_i) \alpha)$

$= \arg\ \min \sum_{i \in y \neq h(x_i)} w_i \exp(-y_i) + \sum_{i \in y = h(x_i)} w_i \exp(y_i)$

Let $\epsilon = \sum_{i \in y \neq h(x_i)} w_i$ = weighted classification error of h

$= \arg\ \min (1-\epsilon) \exp(-\alpha) + \epsilon \exp(\alpha)$

$= \alpha = \frac{1}{2} \log\frac{1-\epsilon}{\epsilon}$
Finishing up AdaBoost:

- Incrementally update U_i

$$w_i' = \frac{1}{Z'} \exp \{ -y_i (H_b(x_i) + \alpha h(x_i)) \}$$

$$Z' = \sum_{i=1}^{n} \exp \{ -y_i (H(x_i) + \alpha h(x_i)) \}$$

$$= \sum_{i=1}^{n} Z \cdot w_i \cdot \exp \{ -\alpha y_i h(x_i) \}$$

$$= Z \cdot \left(\sum_{i: y_i = h_b(x_i)} w_i \exp(\alpha) + \sum_{i: y_i \neq h_b(x_i)} w_i \exp(-\alpha) \right)$$

$$= Z \cdot \left(\varepsilon \exp(\alpha) + (1-\varepsilon) \exp(-\alpha) \right)$$

Recall: $\alpha = \frac{1}{2} \log \left(\frac{1 - \frac{1}{\sqrt{\varepsilon}}} {\frac{1}{\sqrt{\varepsilon}}} \right)$

$$Z' = Z \cdot \left(\varepsilon \sqrt{\frac{1 - \varepsilon}{\varepsilon}} + (1 - \varepsilon) \cdot \sqrt{\frac{\varepsilon}{1 - \varepsilon}} \right)$$

$$L(H + \alpha H_b) = L(H) \cdot \left(2 \sqrt{\varepsilon (1-\varepsilon)} \right)$$
if we halt whenever the classifier h
has weighted test error E too
close to $\frac{1}{2}$, i.e. suppose require
that $E \leq \frac{1}{2} - \delta$

then: $2n \sqrt{E(1 - E)} \leq 2n \sqrt{\left(\frac{1}{2} - \delta\right)(\frac{1}{2} + \delta)}$

$\leq 2 \sqrt{\frac{1}{4} - \delta^2}$

$= \sqrt{1 - 4\delta^2}$

$L(H + ah) \leq L(H) \cdot \sqrt{1 - 4\delta^2}$

after we add k trees to the ensemble.

$L(H) \leq L(O) \cdot (1 - 4\delta^2)^{k/2} \leq n \cdot (1 - 4\delta^2)^{k/2}.$

if δ constant, need $O(\log n)$ trees
to achieve small loss.
\[L(w) = f_1(w) + f_2(w) = (w-1)^2 + (w+1)^2 = 2w^2 + 2 \]

\[L'(w) = 4w \quad f_1'(w) = 2(w-1) \]

\[L'(w)f_1'(w) = 8w(w-1) \neq 0 \]

Why SGD:

\[x_i, y_i \text{ example selected at time } t \]

\[L(w_{t+1}) = L(w_t) - \alpha \nabla L(w_t)^T \nabla L(h(x_i; w_t); y_i) + \delta(w) \]

\[E[L(w_{t+1})] = L(w_t) - E[\alpha \nabla L(w_t)^T \nabla L(h(x_i; w_t); y_i)] + \delta(w) \]

\[= L(w_t) - \alpha \nabla L(w_t)^T E[\nabla L(h(x; w_t); y_i)] + \delta(w) \]

\[E[\nabla L(h(x; w_t); y_i)] = \sum_{i=1}^{n} \frac{1}{n} \nabla L(h(x; w_t); y_i) \]

\[= \nabla_w \left(\frac{1}{n} \sum_{i=1}^{n} L(h(x_i; w_t); y_i) \right) \]

\[= \nabla_w \left(\frac{1}{n} \sum_{i=1}^{n} L(w_t) \right) \]

\[= L(w_t) - \alpha \nabla L(w_t)^T \nabla L(w_t) + C \alpha^2 \]

\[\frac{1}{n} \left\| \nabla L(w_t) \right\|^2 \geq 0 \]

SGD vs GD:

* SGD is faster per iteration
* SGD generalizes better!
* SGD helps avoid local minima
Neural Networks a.k.a. "Multilayer Perceptron"

\[a_i = \sigma (w_{i1} x_1 + w_{i2} x_2 + w_{i3} x_3 + \cdots + w_{in} x_n + b_i) \]

\[h = \sigma (w_{1a} a_1 + w_{2a} a_2 + \cdots + w_{na} a_n + b_h) \]

\[a \in \mathbb{R}^3, \quad a = \sigma (Wx + b) \]

\[a_1 = \sigma (w_{11} x_1 + w_{12} x_2 + w_{13} x_3 + \cdots + w_{1n} x_n + b_1) \]
\[a_2 = \sigma (\cdots) \]
\[a_3 = \sigma (\cdots) \]
\[h = \sigma (w_{1a} a_1 + w_{2a} a_2 + \cdots + w_{na} a_n + b_h) \]

\[h(x) = \frac{1}{\beta} (u^T \sigma (Wx + b) + c) \]

\[h(x) = u^T \phi(x) \kappa, \text{ where } \phi(x) = \sigma (Wx + b) \]
What is σ?

- ReLU: Rectified linear unit.

$\text{ReLU}(x) = \sigma(x) = \max(0, x)$

ReLU networks (nets where all nonlinearities are ReLUs) are piecewise linear.

All continuous piecewise linear functions can be expressed as a ReLU network.

Why does this hold? $\text{ReLU}'(x) = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$

$f''(x) = c_0 + a_1 \text{ReLU}'(x-b_1) + a_2 \text{ReLU}'(x-b_2) \ldots$

$f(x) = c_0 x + c_1 + a_1 \text{ReLU}(x-b_1) + a_2 \text{ReLU}(x-b_2) \ldots$
Let \(f(x) = \text{sign}(x) = \begin{cases} \frac{x}{|x|} & \text{if } x \leq 0 \\ -\frac{x}{|x|} & \text{if } x > 0 \end{cases} \)

\[f(x) = -x + 2 \text{ReLU}(x) \]

Let \(f(x,y) = \max(x,y) = \begin{cases} x & \text{if } x \geq y \\ y & \text{if } x < y \end{cases} \)

\[f(x,y) = \text{ReLU}(y-x) + x \]

Any function \(\Phi \) can be approximated as an ANN:

- Linear function + ReLU
- "Universality" to approx any function!

Choose the "architecture" + "weights/parameters" \(\omega_0, \omega_1, \ldots \)
Common Nonlinearities

- ReLU
- $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$
- $\text{sigmoid}(x) = \frac{1}{1 + e^{-x}}$
- "Smoothed" ReLU
- "Saturating" ReLU

$\sigma(x) = \max(0, \min(x, L))$
How to learn a DNN:

\[\min_w \sum_{i=1}^{n} l(h(x_i; w); y_i) \]

- **STOCHASTIC Gradient descent!**)
- Using a subsample of \(D \) to compute gradients at each step
- **+ automatic differentiation**
- \(\neq \) not numerical differentiation
 \[f'(x) \neq \frac{f(x+0.001) - f(x)}{0.01} \]
- \(\neq \) not symbolic diff
- About the same time as computing \(f \) to compute \(\Delta f \)
- \(\rightarrow \) **BACKPROPAGATION**

GD: \(w \leftarrow w - \alpha \frac{1}{n} \sum_{i=1}^{n} \nabla l(h(x_i; w); y_i) \)

SGD: pick \(i \) from \(1 \ldots n \) at random
\(w \leftarrow w - \alpha \nabla l(h(x_i; w); y_i) \)

\[L(w - \alpha \nabla L(w)) = L(w) - \alpha L(w)^T \nabla L(w) + o(\alpha^2) \]

next \(w \)
\[\| \nabla L(w) \|^2 \geq 0 \]

\[L(w - \alpha \nabla l(h(x; w), y_i)) = L(w) - \alpha \nabla l(h(x; w), y_i) + o(\alpha) \]
Convolutional Neural Network

Image is what? Multidim array \((3 \times W \times H)\)

e.g. a \(16 \times 16\) coloring: \((3 \times 16 \times 16)\) array

\[
h(x) = U \cdot \text{RELU} \left(\frac{W x + b}{W \cdot \text{VEC}(x) + b} \right)
\]

Want: something shift-invariant

\[
\text{out} = \text{conv}(\text{in}, \text{filter})
\]

\((d-kh) \times (d-kh)\) \(d \times d\) \(k \times k\)
Conv layers:

\[
\begin{bmatrix}
 \frac{\text{[}} \frac{\text{[}} \frac{\text{[}} \frac{\text{[}} \\
 \text{[}} \frac{\text{[}} \frac{\text{[}} \frac{\text{[}} \\
 \text{[}} \\
 \text{[}}
\end{bmatrix} \in \mathbb{R}^{C_{out} \times C_{in} \times k \times k}
\]

\[W\]

\[\text{(out)}_j = \sum_i \text{conv}(\text{(in)}_i, W_{j,i})\]

CNN

Input \[x\] → [Conv] → [Fully] → [Conv] → [Fully] → ...

\[\text{vec} \rightarrow \text{MLP} \rightarrow \text{output} \]

\text{flatten}
DNN and Overfitting

A model is overparameterized when
\[d \gg n \]
where \(d \) is the number of parameters and \(n \) is the number of training examples.

"DNNs don't overfit" as much as other models when trained using standard methods.

Counter-overfitting methods:

- \(\|w\|_2 \) regularization + \(\lambda \|w\|_2^2 \) "weight decay"

- dropout: While training, for each step of SGD, "remove" each hidden node from the network w.p. \(p > 0 \) (e.g. \(p = 1/2 \))

- batch normalization