Bias-Variance Decomposition in Ridge Linear Regression

Wen Sun

CS 4780, Fall 2022

1 Ridge Linear Regression with fixed Design

We consider the setting where examples \(\{x_i\}_{i=1}^n \) are fixed (i.e., no randomness on the features), while the regression target \(\{y_i\} \) could be random. We further assume that the regression targets \(y_i \) are generated in the following way:

\[
y_i = (w^*)^\top x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, 1),
\]

where \(\epsilon_i \) are i.i.d Gaussian noises. We can write everything using matrix and vectors. Denote

\[
X = \begin{bmatrix} x_1, \ldots, x_n \end{bmatrix} \in \mathbb{R}^{d \times n} \quad \text{and} \quad Y = \begin{bmatrix} y_1, \ldots, y_n \end{bmatrix}^\top \in \mathbb{R}^n, \quad \text{and} \quad \epsilon = \begin{bmatrix} \epsilon_1, \ldots, \epsilon_n \end{bmatrix}^\top \in \mathbb{R}^n,
\]

we have:

\[
Y = X^\top w^* + \epsilon.
\]

Ridge LR concerns the following optimization

\[
\hat{w} = \arg \min_w \| X^\top w - Y \|^2_2 + \lambda \| w \|^2_2.
\]

Recall the optimal solution here is

\[
\hat{w} = (XX^\top + \lambda I)^{-1} XY = (XX^\top + \lambda I)^{-1} X(X^\top w^* + \epsilon).
\]

So in this setting, we can think about our dataset \(D = \{x_i, y_i\}_{i=1}^n \) as follows \(D = \{x_i, (w^*)^\top x_i + \epsilon_i\}_{i=1}^n \). Note that the only randomness here is the Gaussian noise. In ML literature, this is called LR w/ fixed design.

We use the following generalization error we introduced in class to model the performance of \(\hat{w} \) from Ridge LR:

\[
\mathbb{E}_\epsilon \sum_{i=1}^n \left(\hat{w}^\top x_i - (w^*)^\top x_i \right)^2.
\]

Here the expectation is with respect to the randomness of the noises since \(\hat{w} \) depends on the noises — recall the dataset is random since it has random Gaussian noises. So we are looking at the squared difference between our prediction \(\hat{w}^\top x_i \) and the best one could get \((w^*)^\top x_i \) (i.e., the Bayes optimal), summed over the fixed \(n \) examples \(\{x_1, \ldots, x_n\} \) (again in the fixed design setting, the examples \(x_i \) are always fixed, i.e., they are not sampled from some distribution).

2 Bias

In this section, we will derive a specific formulation for bias and show that it is monodically increasing wrt \(\lambda \).

First thing to recall is that \(\hat{w} \) depends on our dataset, i.e., \(\hat{w} = (XX^\top + \lambda I)^{-1} XY \). Since \(Y \) has random noises, \(\hat{w} \) will be a random quantity. So we can compute its expectation.

\[
\mathbb{E}_\epsilon[\hat{w}] = \mathbb{E}_\epsilon \left(XX^\top + \lambda I \right)^{-1} XY = \left(XX^\top + \lambda I \right)^{-1} X \mathbb{E}_\epsilon[Y]
\]

where we use the fact that \(X \) are fixed (i.e., this is the fixed design setting), and the expectation \(\mathbb{E}_\epsilon \) denoting the expectation with respect to the random noise \(\epsilon_i, i \in [1, \ldots, n] \).
Since $Y = X^\top w^* + \epsilon$, and $\mathbb{E}[\epsilon] = 0$, we get:

$$\mathbb{E}[\hat{w}] = \left(XX^\top + \lambda I\right)^{-1} XX^\top w^* = \left(XX^\top + \lambda I\right)^{-1} (XX^\top + \lambda I - \lambda I) w^*$$

$$= \left(XX^\top + \lambda I\right)^{-1} \left(XX^\top + \lambda I\right) w^* - \lambda \left(XX^\top + \lambda I\right)^{-1} w^*$$

$$= w^* - \lambda \left(XX^\top + \lambda I\right)^{-1} w^*.$$

Note that the above expression also shows that there is now no randomness in $\mathbb{E}[\hat{w}]$ anymore.

Now we define the bias as follows,

$$\text{bias} := \sum_{i=1}^n (\mathbb{E}[\hat{w}]^\top x_i - (w^*)^\top x_i)^2 = \sum_{i=1}^n ((\mathbb{E}[\hat{w}] - w^*)^\top x_i)^2$$

Since we have shown that $\mathbb{E}[\hat{w}] - w^* = -\lambda \left(XX^\top + \lambda I\right)^{-1} w^*$, plug in this into the Bias term, we get:

$$\text{bias} = \lambda^2 \sum_{i=1}^n (w^*)^\top \left(XX^\top + \lambda I\right)^{-1} x_i (w^*)^\top \left(XX^\top + \lambda I\right)^{-1} x_i$$

$$= \lambda^2 \sum_{i=1}^n (w^*)^\top \left(XX^\top + \lambda I\right)^{-1} \sum_{i=1}^n x_i x_i^\top \left(XX^\top + \lambda I\right)^{-1} (w^*)$$

$$= \lambda^2 (w^*)^\top \left(XX^\top + \lambda I\right)^{-1} XX^\top \left(XX^\top + \lambda I\right)^{-1} (w^*) \quad \text{(we used} \sum_{i=1}^n x_i x_i^\top = XX^\top)$$

Denote the eigendecomposition of XX^\top as $XX^\top = U \Sigma U^\top$, where Σ is a diagonal matrix $\text{diag}(\sigma_1, \ldots, \sigma_d)$, where $\sigma_1 \geq \sigma_2 \cdots \geq \sigma_d \geq 0$, and U are orthonormal matrices.

One fact is that for $XX^\top + \lambda I$, we can easily verify that its eigenvectors are columns of U, and its eigenvalues are $\sigma_i + \lambda$ for $i \in [1, \ldots, d]$, i.e., $XX^\top + \lambda I = U (\Sigma + \lambda I) U^\top$.

Using eigendecomposition, we can express the bias term using eigenvalues:

$$\text{bias} = \lambda^2 (w^*)^\top U (\Sigma + \lambda I)^{-1} U^\top U \Sigma U^\top U (\Sigma + \lambda I)^{-1} U^\top w^*$$

$$= \lambda^2 (w^*)^\top U (\Sigma + \lambda I)^{-1} \Sigma (\Sigma + \lambda I)^{-1} U^\top w^* \quad \text{we used} \quad U U^\top = U^\top U = I$$

$$= \lambda^2 (w^*)^\top U \begin{bmatrix} \frac{\sigma_1}{(\sigma_1 + \lambda)^2} & 0 & \ldots & 0 \\ 0 & \frac{\sigma_2}{(\sigma_2 + \lambda)^2} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0, & \ldots & \ldots & \frac{\sigma_d}{(\sigma_d + \lambda)^2} \end{bmatrix} U^\top w^*$$

$$= (w^*)^\top U \begin{bmatrix} \frac{\sigma_1}{(\sigma_1 + \lambda)^2} & 0 & \ldots & 0 \\ 0 & \frac{\sigma_2}{(\sigma_2 + \lambda)^2} & \ldots & 0 \\ \ldots & \ldots & \ldots & \ldots \\ 0, & \ldots & \ldots & \frac{\sigma_d}{(\sigma_d + \lambda)^2} \end{bmatrix} U^\top w^*$$

Ok, the above the form for Bias that we would like to analyze a bit.

Case 1: when $\lambda \to 0$ In this case, we note that element in the diagonal matrix $\frac{\sigma_i}{(\sigma_i + \lambda)^2}$ go to 0. This means that our bias term will approach to zero as well. Namely, when $\lambda = 0$, we do not have bias.
Case 2: when $\lambda \to +\infty$. In this case, we get $\frac{\sigma_i}{(\sigma_i + \lambda)^2} \to \sigma_i$. This means that for expression we had for bias approaches to:

$$
\lim_{\lambda \to +\infty} \text{bias} = (w^*)^T U \Sigma U^T w^* = (w^*)^T X X^T w^* = \sum_{i=1}^{n} (x_i^T w^*)^2.
$$

This indeed makes a lot of sense since when $\lambda \to +\infty$, Ridge linear regression will return $\hat{\omega} \to 0$ which means that we always gonna predict zero, which in turn means that $\mathbb{E}_{\epsilon} \hat{\omega} \to 0$. So in this case, we have large bias.

Monotonicity of Bias Note that Bias is monotonically increasing as λ increases.

3 Variance

Here we will give an explicit formulation for the variance and show that it is monodically decreasing.

Recall that $\hat{\omega}$ is a random vector and we have calculated its expectation as $\mathbb{E}_{\epsilon} \hat{\omega} = (XX^T + \lambda I)^{-1} XX^T w^*$. We abuse notation a little bit to write it as $\mathbb{E}[\hat{\omega}]$ below.

We define the form of variance as follows:

$$
\text{Var} := \mathbb{E}_{\epsilon} \left((\mathbb{E}[\hat{\omega}] - \hat{\omega})^T x_i \right)^2 = \mathbb{E}_{\epsilon} \left((\mathbb{E}[\hat{\omega}] - \hat{\omega})^T XX^T (\mathbb{E}[\hat{\omega}] - \hat{\omega}) \right)
$$

Here the expectation \mathbb{E}_{ϵ} is associated with the random vector $\hat{\omega}$ and we used the fact that $\sum_{i} x_i x_i^T = XX^T$ again. Denote $\text{tr}(A)$ as the trace of a matrix A. Recall that we have already had the formulation for both $\hat{\omega}$ and $\mathbb{E}[\hat{\omega}]$, so:

$$
\mathbb{E}[\hat{\omega}] - \hat{\omega} = (XX^T + \lambda I)^{-1} XX^T w^* - (XX^T + \lambda I)^{-1} X (X^T w^* + \epsilon)
$$

$$
= -(XX^T + \lambda I)^{-1} X \epsilon
$$

$$
\text{Var} = \mathbb{E}_{\epsilon} \left[\epsilon^T X^T (XX^T + \lambda I)^{-1} XX^T (XX^T + \lambda I)^{-1} X \epsilon \right]
$$

$$
= \mathbb{E}_{\epsilon} \text{tr} \left(\epsilon^T X^T (XX^T + \lambda I)^{-1} XX^T (XX^T + \lambda I)^{-1} X \epsilon \right)
$$

$$
= \mathbb{E}_{\epsilon} \text{tr} \left(\epsilon \epsilon^T (XX^T + \lambda I)^{-1} XX^T (XX^T + \lambda I)^{-1} X \right)
$$

$$
= \text{tr} \left(XX^T (XX^T + \lambda I)^{-1} XX^T (XX^T + \lambda I)^{-1} X \right)
$$

$$
= \text{tr} \left(XX^T (XX^T + \lambda I)^{-1} XX^T (XX^T + \lambda I)^{-1} \right)
$$

Plug in the Eigendecomposition of XX^T (and $XX^T + \lambda I$) into the above formulation, we get:

$$
\text{Var} = \text{tr} \left(U \Sigma U^T U (\Sigma + \lambda I)^{-1} U^T U \Sigma U^T U (\Sigma + \lambda I)^{-1} U^T \right)
$$

$$
= \text{tr} \left(U \Sigma U^T U (\Sigma + \lambda I)^{-1} U^T \right)
$$

$$
= \text{tr} \left(U^T U (\Sigma + \lambda I)^{-1} U \Sigma U^T U (\Sigma + \lambda I)^{-1} U^T \right)
$$

$$
= \text{tr} \left((\Sigma + \lambda I)^{-1} U \Sigma (\Sigma + \lambda I)^{-1} U^T \right)
$$

$$
= \text{tr} \left((\Sigma + \lambda I)^{-1} (\Sigma + \lambda I)^{-1} \right)
$$

$$
= \sum_{i=1}^{d} \frac{\sigma_i^2}{(\sigma_i + \lambda)^2},
$$
where the last equality uses the fact that $\Sigma(\Sigma + \lambda I)^{-1} \Sigma(\Sigma + \lambda I)^{-1}$ as a whole is a diagonal matrix with entries being $\sigma_i^2/(\sigma_i + \lambda)^2$.

Case 1: when $\lambda \to +\infty$. In this case we have $\sigma_i^2/(\sigma_i + \lambda)^2 \to 0$, which means that $\text{Var} \to 0$. This makes a lot of sense since when $\lambda \to +\infty$, we always have $\hat{\omega} \to 0$, which means that there is not too much randomness on $\hat{\omega}$ (it just converges to the zero vector in the limit).

Case 2: when $\lambda \to +0$. In this case, we have $\sigma_i^2/(\sigma_i + \lambda)^2 \to 1$, which means that $\text{Var} \to d$.

Monotonicity of λ. Note that when λ increases, our variance decreases.

4 The Bias-Variance Decomposition

Now we can put everything together. For our ultimate generalization error, following what we did in class, we have:

$$E \epsilon_n \sum_{i=1}^{n} (\hat{w}^\top x_i - (w^*)^\top x_i)^2 = E \epsilon_n \sum_{i=1}^{n} (\hat{w}^\top x_i - E[\hat{w}]^\top x_i + E[\hat{w}]^\top x_i - (w^*)^\top x_i)^2$$

$$= \sum_i E \epsilon (\hat{w}^\top x_i - E[\hat{w}]^\top x_i)^2 + \sum_i E \epsilon (E[\hat{w}]^\top x_i - (w^*)^\top x_i)^2$$

$$= \text{Variance} + \text{Bias} = \sum_{i=1}^{d} \sigma_i^2/(\sigma_i + \lambda)^2 + (w^*)^\top U \begin{bmatrix} \frac{\sigma_1}{(\sigma_1 + 1)^2} & 0 & \cdots \\ 0 & \frac{\sigma_2}{(\sigma_2 + 1)^2} & \cdots \\ \cdots & \cdots & \cdots \\ 0 & \cdots & \frac{\sigma_d}{(\sigma_d + 1)^2} \end{bmatrix} U^\top w^*$$

Q: why don’t we have the noise term here?

Since Variance is monodically decreasing while Bias is monotonically increasing, there must exist a sweep spot for λ that minimizes the sum of these two terms. The above formulation allows us in theory to calculate that (just take the derivative with respect to λ, set it to zero, and solve for λ). Of course in practice we cannot calculate this sweep spot for λ since we do not know w^* and U and σ_i. So in practice, we use techniques like Cross Validation to select the best λ.
