Fairness in Ranking & Wrap-Up

CS4780/5780 – Machine Learning
Fall 2019

Nika Haghtalab & Thorsten Joachims
Cornell University

Reading:
None

Ranking in Online Systems

Ranking function \(\pi \) that ranks items for context \(x \).

\[\Rightarrow \text{Learning-to-Rank} \]

How do we train these systems?

Goal: Maximize utility of rankings to the users.

Probability Ranking Principle [Robertson, 1977]:
• Rank documents by probability of relevance \(y^* \)
• For virtually any measure \(\Delta \) of ranking quality

\[y^* := \arg\max_y [\Delta(y|x)] \]

Two-Sided Market

Online Retail
• Utility to Users:
 Customers find products they want
• Utility to Items:
 Sellers get revenue

Two-Sided Market

Music Streaming
• Utility to Users:
 Customers find music they enjoy
• Utility to Items:
 Artists get streaming revenue

Two-Sided Market

News
• Utility to Users:
 Readers find relevant articles
• Utility to Items:
 Writers get their voice out (and ad revenue)
What can go wrong?

Current Learning-to-Rank methods focus only on users, and are oblivious to impact on items.

Endogenous Factors
- How to allocate exposure based on merit in order to
 - Satisfy legal requirements
 - Shape marketplace dynamics (e.g., Spotify, superstar economics)
 - Spam, Polarization

Exogenous Factors
- How to estimate merit without biases like
 - Position bias
 - Trust bias
 - Uncertainty bias
 - Historical actions
 - Stereotypes

Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Position-Based Exposure Model

Definition:
- Exposure e_j is the probability a users observes the item at position j.

How to estimate?
- Eye tracking [Joachims et al. 2007]
- Intervention studies [Joachims et al. 2017]
- Intervention harvesting [Agarwal et al. 2019] [Fang et al. 2019]

Fairness Constraints

$exposure = f(relevance)$

- Disparate Exposure:
 - Expected exposure proportional to the expected relevance of the group
- Disparate Impact:
 - Expected revenue (e.g., clicks) proportional to the expected relevance of the group
- Group parity:
 - Expected exposure equal for all groups

Probabilistic Ranking Policies $\pi(y|x)$

$expo(|x|) = \sum P_{i,j} e_j$

$qual (\pi|x) = \sum \sum e_j P_{i,j} rel_i$

$P_{i,j} = \text{Prob that item } i \text{ is ranked at position } j$

$e_j = \text{exposure at position } j$
Disparate Exposure Constraint

Group Exposure and Merit
\[\text{expo}(G|P) = \sum_{i \in G} \text{expo}(i|x) \]

Group Fairness Constraint
\[\frac{\text{expo}(G_0|x)}{\text{rel}(G_0|x)} = \frac{\text{expo}(G_1|x)}{\text{rel}(G_1|x)} \]

→ Make exposure proportional to relevance

Computing the Best Fair Policy

Goal: Maximize ranking quality while fair to items.
\[\pi^*(y|x) = \arg\max_{\pi} \left[\text{qual}(\pi|x) \right] \]
\[\text{s.t.} \quad \frac{\text{expo}(G_0|x)}{\text{rel}(G_0|x)} = \frac{\text{expo}(G_1|x)}{\text{rel}(G_1|x)} \]

→ Computationally hard!

Marginal Rank Distribution \(P \)

Computing the Best Fair Policy

• Optimal \(P^* \) is solution of linear program
\[P^* = \arg\max_P \left[r^T Pe \right] \]
\[\text{s.t.} \quad 1^T P = 1 \]
\[P1 = 1 \]
\[0 \leq P \leq 1 \]
\[\text{rel}_2 g^T P e = \text{rel}_1 g_2^T P e \]

Quality

Fairness

Computing \(\pi^* \) from \(P^* \)

Birkhoff-von Neumann decomposition
\[P^* = \theta_1 P_1 + \cdots + \theta_k P_k \]

where \(P_1 \ldots P_k \) are permutation matrices and \(\theta_1 \geq 0 \) with \(\sum \theta_i = 1 \).

→ Ranking policy \(\pi^*(y|x) = \begin{cases} \theta_i & \text{if } (y = P_i) \\ 0 & \text{else} \end{cases} \)

Summary of Method

1. Estimate relevances \(r \) for query \(x \)
2. Define (merit-based) fairness constraint
3. Solve linear program for marginal rank matrix
\[P^* = \arg\max_P \left[r^T P e \right] \]
\[\text{s.t.} \quad 1^T P = 1 \]
\[P1 = 1 \]
\[0 \leq P \leq 1 \]
\[P \text{ is fair} \]
4. Compute ranking policy \(\pi^* \) from \(P^* \)
Example

- Six items, two groups
- Relevances: \(\text{rel}(G_1) = (82\%, 81\%, 80\%) \), \(\text{rel}(G_2) = (79\%, 78\%, 77\%) \)

Fairness of Exposure

Fair ranking policy \(\pi \) allocates exposure to items based on merit.

Endogenous Factors
- How to allocate exposure based on merit in order to
 - Satisfy legal requirements
 - Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors
- How to estimate merit without biases like
 - Position bias
 - Trust bias
 - Uncertainty bias
 - Historical actions
 - Stereotypes

Conventional Ranking

Fair Ranking

Quality

Relative Unfairness

Estimating Merit from Interactions

Data
- Query distribution: \(x_j \sim P(X) \)
- Deployed ranker: \(y_j = \pi_0(x_j) \)
- Feedback: clicks, purchases, plays, reads

\(\rightarrow \) Feedback is biased!

Modeling Position Bias

- Assume:
 - Click implies observed and relevant: \((\text{click}_i = 1) \leftrightarrow (\text{obs}_i = 1) \land (\text{rel}_i = 1) \)
- Problem:
 - No click can mean not relevant OR not observed
 \((\text{click}_i = 0) \leftrightarrow (\text{obs}_i = 0) \lor (\text{rel}_i = 0) \)

\(\rightarrow \) Understand observation mechanism

Inverse Propensity Score Estimator

- Observation Propensities
 \(\rightarrow Q(\text{obs}_i = 1 \mid x, y) \)
 - Random variable \(\text{obs}_i \in \{0, 1\} \) indicates whether relevance label \(\text{rel}_i \) is observed.
 - Can use position-based exposure \(Q(\text{obs}_i = 1 \mid x, y) = e_i \)
- De-biased Regression via IPS weighting

\(\rightarrow \) In expectation independent of past rankings!

Counterfactual Policy Learning

- Policy Learning for Contextual Bandits and Ranking
 - Data is biased by past system actions
 - Propensity tagging and/or propensity estimation
 - Unbiased learning objective based on causal inference
 - Inverse Propensity Score (IPS) weighting estimators
 - Directly optimize effectiveness of policy
- Transforming how industry approaches these problems
 - YouTube recommendations [Chen et al. 2019], Spotify [McInerny et al. 2018], Google Drive [Agarwal et al. 2019], …
Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors
How to allocate exposure based on merit in order to
- Satisfy legal requirements
- Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors
How to estimate merit without biases like
- Position bias
- Trust bias
- Uncertainty bias
- Historical actions
- Stereotypes

Summary and Conclusions

- Take care of the biases in the data
 - Improve quality, solid foundation for decisions
- Shape how system serves all constituencies
 - Fairness, incentives and market dynamics, legal
 - Long term health of the system

 http://www.joachims.org

Theme: Prediction and Action

- Building intelligent systems vs. analyzing existing systems
 - Prediction
 - Intelligent action
 - Guarantees on prediction/action quality

Theme: Overfitting

- Fundamental trade-off in learning
 - Training error vs. prediction error
 - Model capacity
 - Statistical learning theory
 - Empirical risk minimization

Theme: Massive Overparameterization

- The success story of machine learning
 - Regularized linear models
 - Kernels
 - Deep networks
 - Number of parameters \gg number of examples
Theme: Theoretical Underpinning

- Theory for understanding sake
 - Identify the mechanisms at play in ML
 - Understand model complexity
 - Understand common themes between algorithms

Design Approaches for ML

- Empirical Risk Minimization (ERM)
 - Fixed at training time: class of decision rules $h: X \rightarrow Y$, loss, x and y
 - Strategy: minimize training loss
- Conditional Probability Models
 - Fixed at training time: class of models for $P(Y|X)$, x and y
 - Strategy: max conditional likelihood or MAP (or Bayes)
- Generative Models
 - Fixed at training time: class models for $P(Y|X)$
 - Strategy: max likelihood or MAP (or Bayes)
- Not covered: Bayesian ML perspective → ORIE 6741

Batch Learning for Classification

- ERM
 - Decision Trees
 - Perceptron
 - SVMs
 - Neural Networks
 - Boosting
- Conditional Probability
 - Logistic Regression
 - Conditional Random Fields
 - Ridge Regression
- Generative
 - Multinomial Naïve Bayes
 - Multivariate Naïve Bayes
 - Linear Discriminant
- Other Methods
 - Gaussian Processes
 - Deep Networks
 - Recurrent Networks
 - Parametric (Graphical) Models
 - Matrix factorization
 - * Regression
 - * Multiclass

Structured Output Prediction

- ERM
 - Structural SVMs
- Conditional Probability
 - Conditional Random Fields
- Generative
 - Hidden Markov Model
- Other Methods
 - Maximum Margin Markov Networks
 - Markov Random Fields
 - Bayesian Networks
 - Statistical Relational Learning
 - Markov Logic Networks
 - Encoder/Decoder Networks
 → NLP classes

Online Learning

- Expert Setting
 - Halving Algorithm
 - Weighted Majority
 - Randomized WM
- Bandit Setting
 - None
- Other Methods
 - UCB
 - EXP3
 - Follow the Leader
 - Partial Monitoring
 - Contextual Bandits
 - Dueling Bandits
 - Coactive Learning

Unsupervised Learning

- Clustering
 - None
- Other Methods
 - Spectral Clustering
 - Multi-Dimensional Scaling
 - Latent Dirichlet Allocation
 - Semantic Embeddings
 - Deep Auto-Encoders
- Other Tasks
 - Outlier Detection
 - Novelty Detection
 - Dimensionality Reduction
 - Non-Linear Manifold Detection

→ CS4786 Machine Learning for Data Science
→ CS4850 Math Found for the Information Age
→ INFO 6150 Advanced Topic Models

→ CSE 6781 Theoretical Foundations of Machine Learning
ML in Computer Visions
- Covered
 - Feedforward Neural Networks
- Other
 - Convolutional Networks
 - More Deep Learning
 - Even more Deep Learning
→ CS6670 Computer Vision
→ CS4670 Intro Computer Vision

Learning to Act
- Covered
 - Off-policy policy learning
 - Contextual Bandits
- Other
 - Reinforcement learning
 - Markov Decision Processes
 - Model-based vs. model-free
 - On policy vs. off policy
 - Policy gradient
→ CS4700 Artificial Intelligence

ML and Causality
- Covered
 - Potential outcomes model
 - Observational setting
 - Instrumental variables
 - Continuous treatments
 - Longitudinal treatments
 - Causal discovery
 - Parameter inference
 - Causal networks
 - Structural equation models

ML and Fairness
- Covered
 - Privacy
 - Intelligibility
 - Fairness
- Other
 - Accountability
 - Transparency
 - Algorithms and guarantees
→ INFO4270: Ethics and Policy in DS

FINAL EXAM
SUNDAY 7:00PM, BARTON