Fairness in Ranking & Wrap-Up

CS4780/5780 – Machine Learning
Fall 2019

Nika Haghtalab & Thorsten Joachims
Cornell University

Reading:
None
Ranking in Online Systems

Ranking function π that ranks items for context x. → Learning-to-Rank
How do we train these systems?

Goal: Maximize utility of rankings to the users.

Probability Ranking Principle [Robertson, 1977]:

- Rank documents by probability of relevance \(y^* \)
- For virtually any measure \(\Delta \) of ranking quality

\[
y^* := \arg\max_y [\Delta(y|x)]
\]
Two-Sided Market

Online Retail

• Utility to Users:
 Customers find products they want

• Utility to Items:
 Sellers get revenue
Two-Sided Market

Music Streaming

• Utility to Users:
 Customers find music they enjoy

• Utility to Items:
 Artists get streaming revenue
Two-Sided Market

News

• Utility to Users:
 Readers find relevant articles

• Utility to Items:
 Writers get their voice out (and ad revenue)
What can go wrong?

Current Learning-to-Rank methods focus only on users, and are oblivious to impact on items.
Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors
How to allocate exposure based on merit in order to
- Satisfy legal requirements
- Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors
How to estimate merit without biases like
- Position bias
- Trust bias
- Uncertainty bias
- Historical actions
- Stereotypes
Are Conventional Methods Fair?

Probability Ranking Principle:
• Rank documents by probability of relevance $\rightarrow y^*$ [Robertson, 1977]
• For virtually any measure Δ of ranking quality

 $$y^* := \arg\max_y [\Delta(y|x)]$$

• Are rankings fair/desirable?

<table>
<thead>
<tr>
<th>Rank</th>
<th>Item</th>
<th>P(read)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Times 1</td>
<td>50.99</td>
</tr>
<tr>
<td>2</td>
<td>Times 2</td>
<td>50.98</td>
</tr>
<tr>
<td>3</td>
<td>Times 3</td>
<td>50.97</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>Post 1</td>
<td>49.99</td>
</tr>
<tr>
<td>101</td>
<td>Post 2</td>
<td>49.98</td>
</tr>
<tr>
<td>102</td>
<td>Post 3</td>
<td>49.97</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Position-Based Exposure Model

Definition:
Exposure e_j is the probability a user observes the item at position j.

How to estimate?
• Eye tracking [Joachims et al. 2007]
• Intervention studies [Joachims et al. 2017]
• Intervention harvesting [Agarwal et al. 2019] [Fang et al. 2019]

<table>
<thead>
<tr>
<th>Rank</th>
<th>Exposure P(observe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>e_1</td>
</tr>
<tr>
<td>2</td>
<td>e_2</td>
</tr>
<tr>
<td>3</td>
<td>e_3</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>100</td>
<td>e_{100}</td>
</tr>
<tr>
<td>101</td>
<td>e_{101}</td>
</tr>
<tr>
<td>102</td>
<td>e_{102}</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Fairness Constraints

\[\text{exposure} = f(\text{relevance}) \]

- **Disparate Exposure:**
 - Expected exposure proportional to the expected relevance of the group
- **Disparate Impact:**
 - Expected revenue (e.g. clicks) proportional to the expected relevance of the group
- **Group parity:**
 - Expected exposure equal for all groups
Probabilistic Ranking Policies $\pi(y|x)$

Exposure and Quality for $\pi(y|x)$

$\text{expo}(i|x) = \sum_j \mathbb{P}_{i,j} e_j$

$\text{qual}(\pi|x) = \sum_i \sum_j e_j \mathbb{P}_{i,j} \text{rel}_i$

$\mathbb{P}_{i,j} = \text{Prob that item } i \text{ is ranked at position } j$

$e_j = \text{exposure at position } j$
Disparate Exposure Constraint

Group Exposure and Merit

\[\text{expo}(G|P) = \sum_{i \in G} \text{expo} (i|x) \quad \text{rel}(G|P) = \sum_{i \in G} \text{rel}(i|x) \]

Group Fairness Constraint

\[\frac{\text{expo}(G_0|x)}{\text{rel}(G_0|x)} = \frac{\text{expo}(G_1|x)}{\text{rel}(G_1|x)} \]

→ Make exposure proportional to relevance
Computing the Best Fair Policy

Goal: Maximize ranking quality while fair to items.

\[\pi^*(y|x) = \arg\max_{\pi} \ \text{argmax}_\pi \]

\[\text{subject to} \]

\[\frac{\exp(q_0|x)}{\text{rel}(q_0|x)} = \frac{\exp(q_1|x)}{\text{rel}(q_1|x)} \]

→ Computationally hard!
Marginal Rank Distribution \mathbb{P}

\[\mathbb{P} \]

\[\pi, \mathbb{P} \]

\[\begin{array}{cccc}
 y_1 & y_2 & y_3 & y_4 \\
 A & B & A & B \\
 B & A & C & C \\
 C & D & B & A \\
 D & E & E & F \\
 E & F & F & E \\
 F & F & G & D \\
 G & G & G & D \\
\end{array} \]

\[\begin{array}{cccc}
 1 & 2 & 3 & 4 \\
 0.72 & 0.23 & 0.05 & 0 \\
 0.28 & 0.52 & 0.20 & 0 \\
 ... & ... & ... & ... \\
\end{array} \]

\[\mathbb{P}_{i,j} \]
Computing the Best Fair Policy

• Optimal \mathbb{P}^* is solution of linear program

$$\mathbb{P}^* = \arg\max_{\mathbb{P}} \left[\text{rel}^T \mathbb{P} \text{e} \right]$$

s.t.

$$1^T \mathbb{P} = 1$$
$$\mathbb{P} 1 = 1$$
$$0 \leq \mathbb{P} \leq 1$$

$$\text{rel}_2 g_1^T \mathbb{P} \text{e} = \text{rel}_1 g_2^T \mathbb{P} \text{e}$$

Quality

P is doubly stochastic

Fairness
Computing π^* from \mathbb{P}^*

Birkhoff-von Neumann decomposition

$$\mathbb{P}^* = \theta_1 P_1 + \cdots + \theta_k P_k$$

where $P_1 \ldots P_k$ are permutation matrices and $\theta_i \geq 0$ with $\sum_i \theta_i = 1$.

\rightarrow Ranking policy $\pi^*(y|x) = \begin{cases}
\theta_i & \text{if } (y = P_i) \\
0 & \text{else}
\end{cases}$
Summary of Method

1. Estimate relevances r for query x
2. Define (merit-based) fairness constraint
3. Solve linear program for marginal rank matrix

 \[
 \mathbb{P}^* = \arg\max_{\mathbb{P}} \left[r^T \mathbb{P} q \right]
 \]
 \[
 s.t. \quad 1^T \mathbb{P} = 1
 \]
 \[
 \mathbb{P} 1 = 1
 \]
 \[
 0 \leq \mathbb{P} \leq 1
 \]
 \[
 \mathbb{P} \text{ is fair}
 \]

4. Compute ranking policy π^* from \mathbb{P}^*
Example

- Six items, two groups
- Relevances: $\text{rel}(G_1) = \{82\%, 81\%, 80\%\}$, $\text{rel}(G_2) = \{79\%, 78\%, 77\%\}$

![Diagram showing conventional and fair ranking with DCG and DTR values]
Fairness of Exposure

Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors

How to allocate exposure based on merit in order to

- Satisfy legal requirements
- Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors

How to estimate merit without biases like

- Position bias
- Trust bias
- Uncertainty bias
- Historical actions
- Stereotypes
Estimating Merit from Interactions

Data
- Query distribution: $x_j \sim P(X)$
- Deployed ranker: $\tilde{y}_j = \pi_0(x_j)$
- Feedback: clicks, purchases, plays, reads

\rightarrow Feedback is biased!
Modeling Position Bias

- **Assume:**
 - Click implies observed and relevant:
 \[(\text{click}_i = 1) \iff (\text{obs}_i = 1) \land (\text{rel}_i = 1) \]

- **Problem:**
 - No click can mean not relevant OR not observed
 \[(\text{click}_i = 0) \iff (\text{obs}_i = 0) \lor (\text{rel}_i = 0) \]

\[\Rightarrow \text{Understand observation mechanism} \]
Inverse Propensity Score Estimator

- Observation Propensities
 - $Q(obs_i = 1|x, \bar{y})$
 - Random variable $obs_i \in \{0, 1\}$ indicates whether relevance label rel_i is observed.
 - Can use position-based exposure

 $Q(obs_i = 1|x, \bar{y}) = e_i$

- De-biased Regression via IPS weighting

 \rightarrow In expectation independent of past rankings!

<table>
<thead>
<tr>
<th>Presented \bar{y}</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.0</td>
</tr>
<tr>
<td>B</td>
<td>0.8</td>
</tr>
<tr>
<td>C</td>
<td>0.5</td>
</tr>
<tr>
<td>D</td>
<td>0.2</td>
</tr>
<tr>
<td>E</td>
<td>0.2</td>
</tr>
<tr>
<td>F</td>
<td>0.2</td>
</tr>
</tbody>
</table>
Counterfactual Policy Learning

• Policy Learning for Contextual Bandits and Ranking
 – Data is biased by past system actions
 • Propensity logging and/or propensity estimation
 – Unbiased learning objective based on causal inference
 • Inverse Propensity Score (IPS) weighting estimators
 – Directly optimize effectiveness of policy

• Transforming how industry approaches these problems
 – YouTube recommendations [Chen et al. 2019], Spotify [McInerny et al. 2018], Google Drive [Agarwal et al. 2019], ...
Fair ranking policy π allocates exposure to items based on merit.

Endogenous Factors

How to allocate exposure based on merit in order to
- Satisfy legal requirements
- Shape marketplace dynamics (e.g. Spotify, superstar economics)
- Spam, Polarization

Exogenous Factors

How to estimate merit without biases like
- Position bias
- Trust bias
- Uncertainty bias
- Historical actions
- Stereotypes
Summary and Conclusions

• Take care of the biases in the data
 – Improve quality, solid foundation for decisions

• Shape how system serves all constituencies
 – Fairness, incentives and market dynamics, legal

→ Long term health of the system

http://www.joachims.org
Theme: Prediction and Action

• Building intelligent systems vs. analyzing existing systems
 – Prediction
 – Intelligent action
 – Guarantees on prediction/action quality

→ CS4786 Machine Learning for Data Science
→ CS4850 Math Found for the Information Age
→ INFO 6150 Advanced Topic Models
Theme: Overfitting

• Fundamental trade-off in learning
 – Training error vs. prediction error
 – Model capacity
 – Statistical learning theory
 – Empirical risk minimization
Theme: Massive Overparameterization

• The success story of machine learning
 – Regularized linear models
 – Kernels
 – Deep networks
 → Number of parameters \gg number of examples
Theme: Theoretical Underpinning

• Theory for understanding sake
 – Identify the mechanisms at play in ML
 – Understand model complexity
 – Understand common themes between algorithms
Design Approaches for ML

• Empirical Risk Minimization (ERM)
 – Fixed at training time: class of decision rules \(h: X \rightarrow Y \), loss, \(x \) and \(y \)
 – Strategy: minimize training loss

• Conditional Probability Models
 – Fixed at training time: class of models for \(P(Y|X) \), \(x \) and \(y \)
 – Strategy: max conditional likelihood or MAP (or Bayes)

• Generative Models
 – Fixed at training time: class models for \(P(Y,X) \)
 – Strategy: max likelihood or MAP (or Bayes)

• Not covered: Bayesian ML perspective \(\rightarrow \) ORIE 6741
Batch Learning for Classification

- **ERM**
 - Decision Trees
 - Perceptron
 - SVMs
 - Neural Networks
 - Boosting

- **Conditional Probability**
 - Logistic Regression
 - Conditional Random Fields
 - Ridge Regression

- **Generative**
 - Multinomial Naïve Bayes
 - Multivariate Naïve Bayes
 - Linear Discriminant

- **Other Methods**
 - Gaussian Processes
 - Deep Networks
 - Recurrent Networks
 - Parametric (Graphical) Models
 - Matrix factorization
 - Many, many more …
 - *-Regression
 - *-Multiclass
Structured Output Prediction

• ERM
 – Structural SVMs

• Conditional Probability
 – Conditional Random Fields

• Generative
 – Hidden Markov Model

• Other Methods
 – Maximum Margin Markov Networks
 – Markov Random Fields
 – Bayesian Networks
 – Statistical Relational Learning
 – Markov Logic Networks
 – Encoder/Decoder Networks

→ NLP classes
Online Learning

• Expert Setting
 – Halving Algorithm
 – Weighted Majority
 – Randomized WM

• Bandit Setting
 – None

• Other Methods
 – UCB
 – EXP3
 – Follow the Leader
 – Partial Monitoring
 – Contextual Bandits
 – Dueling Bandits
 – Coactive Learning

→ CS6781 Theoretical Foundations of Machine Learning
Unsupervised Learning

• Clustering
 – None

→ CS4786 Machine Learning for Data Science
→ CS4850 Math Found for the Information Age
→ INFO 6150 Advanced Topic Models

• Other Methods
 – Spectral Clustering
 – Multi-Dimensional Scaling
 – Latent Dirichlet Allocation
 – Semantic Embeddings
 – Deep Auto-Encoders

• Other Tasks
 – Outlier Detection
 – Novelty Detection
 – Dimensionality Reduction
 – Non-Linear Manifold Detection
ML in Computer Visions

• Covered
 – Feedforward Neural Networks

• Other
 – Convolutional Networks
 – More Deep Learning
 – Even more Deep Learning

→ CS6670 Computer Vision
→ CS4670 Intro Computer Vision
Learning to Act

- Covered
 - Off-policy policy learning
 - Contextual Bandits

- Other
 - Reinforcement learning
 - Markov Decision Processes
 - Model-based vs. model-free
 - On policy vs. off policy
 - Policy gradient

→ CS4700 Artificial Intelligence
ML and Causality

- Covered
 - Potential outcomes model

- Other
 - Observational setting
 - Instrumental variables
 - Continuous treatments
 - Longitudinal treatments
 - Causal discovery
 - Parameter inference
 - Causal networks
 - Structural equation models
ML and Fairness

• Covered
 – Privacy
 – Intelligibility
 – Fairness

• Other
 – Accountability
 – Transparency
 – Algorithms and guarantees

→ INFO4270: Ethics and Policy in DS
FINAL EXAM
SUNDAY 7:00PM, BARTON