Learning to Act and Causality

CS4780/5780 – Machine Learning
Fall 2019

Nika Haghtalab & Thorsten Joachims
Cornell University

Reading:

Interactive System Schematic

Utility: $U(\pi_0)$

News Recommender

- Context x:
 - User
- Action y:
 - Portfolio of news articles
- Feedback $\delta(x, y)$:
 - Reading time in minutes

Music Voice Assistant

- Context x:
 - User and speech
- Action y:
 - Track that is played
- Feedback $\delta(x, y)$:
 - Listened to the end

Search Engine

- Context x:
 - Query
- Action y:
 - Ranking
- Feedback $\delta(x, y)$:
 - Click / no-click

Log Data from Interactive Systems

- Data
 $S = (x_1, y_1, \delta_1, \ldots, x_n, y_n, \delta_n)$

 Partial Information (aka "Contextual Bandit")

- Properties
 - Contexts x_i drawn i.i.d. from unknown $P(X)$
 - Actions y_i selected by existing system $\pi_0: X \rightarrow Y$
 - Feedback δ_i from unknown function $\delta: X \times Y \rightarrow \mathbb{R}$

[Zadrozny et al., 2003] [Langford & Li]
Use interaction log data

\[S = \{ (x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n) \} \]

- for evaluation of system \(\pi \)
 - Offline estimate of online performance of some system \(\pi \).
 - System \(\pi \) can be different from \(\pi_0 \) that generated log.
- for learning new system \(\pi \)

Goal

Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Example metrics

- CTR
- Revenue
- Time-to-success
- Interleaving
- Etc.

This lecture:

Metric encoded as \(\delta(x, y) \) [click/payoff/time for \((x,y)\) pair]

Online Performance Metrics

System Performance

Definition [Utility of Policy]:

The expected reward / utility \(U(\pi) \) of policy \(\pi \) is

\[
U(\pi) = \int \int \delta(x, y) \pi(y|x) P(x) \, dx \, dy
\]

\(\delta(x, y) \) is reading time of user \(x \) for portfolio \(y \).

Evaluation: A/B Testing

Given \(S = \{ (x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n) \} \) collected under \(\pi_0 \),

\[
\hat{U}(\pi_0) = \frac{1}{n} \sum_{i=1}^{n} \delta_i
\]

\(\Rightarrow \) A/B Testing

Deploy \(\pi_1 \): Draw \(x \sim P(X) \), predict \(y \sim \pi_1(Y|x) \), get \(\delta(x, y) \)

Deploy \(\pi_2 \): Draw \(x \sim P(X) \), predict \(y \sim \pi_2(Y|x) \), get \(\delta(x, y) \)

\[\vdots\]

Deploy \(\pi_{|H|} \): Draw \(x \sim P(X) \), predict \(y \sim \pi_{|H|}(Y|x) \), get \(\delta(x, y) \)

System

- Definition [Deterministic Policy]:
 - Function
 \[y = \pi(x) \]
 - that picks action \(y \) for context \(x \).
- Definition [Stochastic Policy]:
 - Distribution
 \[\pi(y|x) \]
 - that samples action \(y \) given context \(x \)
Pros and Cons of A/B Testing

- **Pro**
 - User centric measure
 - No need for manual ratings
 - No user/expert mismatch
- **Cons**
 - Requires interactive experimental control
 - Risk of fielding a bad or buggy π₁
 - Number of A/B Tests limited
 - Long turnaround time

Evaluation: Outline

- **Offline Evaluating of Online Metrics**
 - A/B Testing (on-policy)
 - Counterfactual estimation from logs (off-policy)
 - **Approach 1: “Model the world”**
 - Imputation via reward prediction
 - **Approach 2: “Model the bias”**
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Approach 1: Reward Predictor

- **Idea:**
 - Use \(S = \{(x_1, y_1, \delta_1), \ldots, (x_n, y_n, \delta_n)\} \) from \(\pi_o \) to estimate reward predictor \(\delta(x, y) \)
 - Deterministic \(\pi \): Simulated A/B Testing with predicted \(\hat{\delta}(x, y) \)
 - For actions \(y'_i = \pi(x_i) \) from new policy \(\pi \), generate predicted log \(S' = \{(x_1, y'_1, \delta(x_1, y'_1)), \ldots, (x_n, y'_n, \delta(x_n, y'_n))\} \)
 - Estimate performance of \(\pi \) via \(\hat{U}_{\text{rp}}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta(x_i, y'_i) \pi(y'_i|x_i) \)
 - Stochastic \(\pi \): \(\hat{U}_{\text{rp}}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{y \in \mathcal{Y}} \delta(x_i, y) \pi(y|x_i) \)

Regression for Reward Prediction

- **Learn** \(\hat{\delta}: x \times y \rightarrow \Re \)
 - **1. Represent via features** \(\Psi_1(x, y) \)
 - **2. Learn regression based on** \(\Psi_1(x, y') \) from \(S \) collected under \(\pi_o \)
 - **3. Predict** \(\hat{\delta}(x, y') \) for \(y' = \pi(x) \) of new policy \(\pi \)

Problems of Reward Predictor

- **Modeling bias**
 - choice of features and model
- **Selection bias**
 - \(\pi_o \)'s actions are over-represented
 - \(\hat{U}_{\text{rp}}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta(x_i, \pi(x_i)) \)
 - Can be unreliable and biased
Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 → Counterfactual estimation from logs (off-policy)
- Approach 1: “Model the world”
 - Imputation via reward prediction
- Approach 2: “Model the bias”
 - Counterfactual estimation from logs (off-policy)
 - Inverse propensity scoring (IPS) estimator

Approach “Model the Bias”

- Idea:
 Fix the mismatch between the distribution \(\pi_0(y|x) \) that generated the data and the distribution \(\pi(y|x) \) we aim to evaluate.

\[
U(\pi_0) = \int \int \delta(x, y) \pi_0(y|x) P(x \, dx \, dy)
\]

Potential Outcome Model

- Example: Treating Heart Attacks
 - Treatments: \(Y \)
 - Bypass / Stent / Drugs
 - Chosen treatment for patient \(x_i: y_i \)
 - Outcomes: \(\delta_i \)
 - 5-year survival: 0 / 1
 - Which treatment is best?

Counterfactual Model

- Example: Treating Heart Attacks
 - Treatments: \(Y \)
 - Bypass / Stent / Drugs
 - Chosen treatment for patient \(x_i: y_i \)
 - Outcomes: \(\delta_i \)
 - 5-year survival: 0 / 1
 - Which treatment is best?

Potential Outcome Model

- Example: Treating Heart Attacks
 - Treatments: \(Y \)
 - Bypass / Stent / Drugs
 - Chosen treatment for patient \(x_i: y_i \)
 - Outcomes: \(\delta_i \)
 - 5-year survival: 0 / 1
 - Which treatment is best?
 - Everybody Drugs
 - Everybody Stent
 - Everybody Bypass
 → Drugs 3/4, Stent 2/3, Bypass 2/4 – really?

Treatment Effects

- Average Treatment Effect of Treatment \(y \)
 - \(U(y) = \frac{1}{n} \sum \delta(x_i, y) \)
- Example
 - \(U(\text{bypass}) = \frac{5}{11} \)
 - \(U(\text{stent}) = \frac{7}{11} \)
 - \(U(\text{drugs}) = \frac{3}{11} \)
Assignment Mechanism

- Probabilistic Treatment Assignment
 - For patient i, $\pi_i(y_i | x_i)$
 - Selection Bias
- Inverse Propensity Score Estimator
 - $\hat{\theta}_{IPS}(y_i) = \frac{1}{n} \sum \delta(y_i = y | x_i)$
 - Propensity: $p_i = \pi_i(y_i | x_i)$
 - Unbiased: $\hat{\theta}(y_i | x_i)$
 - Estimator $\hat{\theta}_{IPS}(y_i)$
 - Example

Interventional vs Observational

- Interventional Controlled Experiment
 - Assignment Mechanism under control
 - Propensities $p_i = \pi_i(y_i | x_i)$ known by design
 - Requirement: $\forall y: \pi_i(y_i = y | x_i) > 0$ (probabilistic)
- Observational Study
 - Assignment Mechanism not under control
 - Propensities p_i need to be estimated
 - Estimate $\hat{\theta}_o(y_i | x_i) = \pi_o(y_i | x_i)$ based on features x_i
 - Requirement: $\hat{\theta}_o(y_i | x_i) = \pi_o(y_i | x_i)$ (unconfounded)

Conditional Treatment Policies

- Policy (deterministic)
 - Context x_i describing patient
 - Pick treatment y_i based on x_i: $y_i = \pi(x_i)$
 - Example policy:
 - $\pi(A) = \text{drugs}, \pi(B) = \text{stent}, \pi(C) = \text{bypass}$
- Average Treatment Effect
 - $U(\pi) = \frac{1}{n} \sum \delta(x_i, \pi(x_i))$
- IPS Estimator
 - $\hat{\theta}_{IPS}(\pi) = \frac{1}{n} \sum \delta(y_i = \pi(x_i))$

Stochastic Treatment Policies

- Policy (stochastic)
 - Context x_i describing patient
 - Pick treatment y based on x_i: $\pi(y | x_i)$
- Note
 - Assignment Mechanism is a stochastic policy as well
- Average Treatment Effect
 - $U(\pi) = \frac{1}{n} \sum \delta(x_i, y) \pi(y | x_i)$
- IPS Estimator
 - $\hat{\theta}_{IPS}(\pi) = \frac{1}{n} \sum \delta(x_i, y) \pi(y | x_i)$

Counterfactual Model = Logs

- Evaluating Online Metrics Offline
 - A/B Testing (on-policy)
 - Counterfactual estimation from logs (off-policy)
- Approach 1: ”Model the world”
 - Estimation via reward prediction
- Approach 2: ”Model the bias”
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

Evaluation: Outline

- $\pi_a(y_i = y | x_i)$
 - Counterfactual treatment
- $\delta(x_i, y_i)$
 - Outcome
- p_i (Propensities)
 - New Policy π
System Evaluation via Inverse Propensity Score Weighting

Definition (IPS Utility Estimator):
Given \(S = \{(x_i, y_i, \delta_i), ..., (x_n, y_n, \delta_n)\} \) collected under \(\pi_0 \),
\[
\hat{U}_{IPS}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)}
\]
\(\Rightarrow \) Unbiased estimate of utility for any \(\pi \), if propensity nonzero whenever \(\pi(y_i | x_i) > 0 \).

Note:
If \(\pi = \pi_0 \), then online A/B Test with \(\Rightarrow \) Off-policy vs. On-policy estimation.

\(\hat{U}_{IPS}(\pi_0) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \)

(Hassan & Thompson, 1982; Rubin, 1983; Zadrozny, et al., 2003)

IPS Estimator is Unbiased

\[E[\hat{U}_{IPS}(\pi)] = \frac{1}{n} \sum_{i=1}^{n} \left[\sum_{x,y} \pi(y|x) \pi_0(x | y) \delta_i \cdot \frac{\pi(y|x)}{\pi_0(y|x)} \right] \]
- Independent
- Marginal
- Full support
- Identical x,y

Illustration of IPS

IPS Estimator:
\[
\hat{U}_{IPS}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)}
\]
Unbiased:
\[
\mathbb{E}[\hat{U}_{IPS}(\pi)] = U(\pi)
\]

Counterfactual Policy Evaluation

- Controlled Experiment Setting:
 - Log data: \(D = \{(x_1, y_1, \delta_1), ..., (x_n, y_n, \delta_n)\} \)
 - observational Setting:
 - Log data: \(D = \{(x_1, y_1, z_1), ..., (x_n, y_n, z_n)\} \)
 - Estimate propensities: \(\pi_i = \pi(y | x, z) \) based on \(x \) and other confounders \(z \)

Goal: Estimate average treatment effect of new policy \(\pi \).
- IPS Estimator
\[
\hat{U}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \delta_i \frac{\pi(y_i | x_i)}{\pi_i}
\]
or many others.

Evaluation: Summary

- Offline Evaluation of Online Metrics
 - A/B Testing (on-policy)
 - \(\Rightarrow \) Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
 - Pro: low variance
 - Con: model mismatch can lead to high bias
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator
 - Pro: unbiased for known propensities
 - Con: large variance

From Evaluation to Learning

Setting: Batch Learning from Bandit Feedback (BLBF)

- "Model the World" Learning:
 - Learn: \(\delta: x \times y \rightarrow \mathbb{R} \)
 - Derive Policy:
 \[
 \pi(y | x) = \arg\min_{y'} \delta(x, y')
 \]
- "Model the Bias" Learning:
 - Find policy that optimizes IPS training error
 \[
 \pi = \arg\min_{\pi} \sum_{i=1}^{n} \delta_i \frac{\pi(y_i | x_i)}{\pi_0(y_i | x_i)}
 \]