If $h(x)$ is sure, then E_{false} can be wrong E_t: $P(h_t=\text{true})$

$h: X \rightarrow Y$

Remark on Warmup:
1. In general, we don't know the "not sure" region.
2. We can't conditionally apply a classifier h_1 to some part and h_2 to others.
3. Let all h_t make a prediction for a given x, i.e. by weighted majority.

H: P_{false} to decrease the weight on points if $h_t(x)=$ correct?
We should not completely remove \(x \) even if some classifiers in the past knew how to answer.

Instead, slowly decrease the weight if \(h_t \) was correct, and

\[
\text{increase the weight if } h_t \text{ wasn't correct.}
\]

Total weight of \(p_{t+1} \) puts on \(x \): \(h_t(x) = y \)

\[
\frac{1}{Z_t} (1 - \frac{3}{t}) \cdot \exp \left(-\frac{1}{2} \ln \frac{1 - \frac{3}{t}}{\frac{1}{Z_t}} \right) = \frac{1}{Z_t} (1 - \frac{3}{t}) \times \exp \left(\ln \left(\frac{1 - \frac{3}{t}}{\frac{1}{Z_t}} \right)^{-\frac{1}{2}} \right)
\]

\(h_t \) was correct on

\[
= \frac{1}{Z_t} (1 - \frac{3}{t}) \times \left(\frac{3}{1 - \frac{3}{t}} \right)^{\frac{1}{2}} = \frac{1}{Z_t} \sqrt{1 - \frac{3}{t}} \cdot \frac{1}{Z_t}
\]