Machine Learning for Intelligent Systems

Lecture 18: Statistical Learning Theory 2

Reading: UML 6

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Sample Complexity – 0 Empirical Error

Theorem: Sample Complexity (0 empirical error)

Let \(m \geq \frac{1}{\epsilon^2} \left(\ln(|H|) + \ln \left(\frac{2}{\delta} \right) \right) \). For any instance space \(X \), labels \(Y = \{-1, 1\} \), distribution \(P \) on \(X \times Y \), with probability \(1 - \delta \) over i.i.d draws of set \(S \) of \(m \) samples, we have Any \(h \in H \) that has 0 empirical error, has true error of \(\epsilon \).

Learning Algorithm: Given a sample set \(S \) and hypothesis class \(h \in H \), if there is a \(h_\delta \in H \) that is consistent with \(S \), return \(h_\delta \). (Eq: Return \(h_\delta \) in version space \(V_S(H, S) \))

Sample Complexity – General

Theorem: Sample Complexity (non-zero empirical error)

Let \(m \geq \frac{1}{\epsilon^2} \left(\ln(|H|) + \ln \left(\frac{2}{\delta} \right) \right) \). For any instance space \(X \), labels \(Y = \{-1, 1\} \), distribution \(P \) on \(X \times Y \), with probability \(1 - \delta \) over i.i.d draws of set \(S \) of \(m \) samples, \(h_\delta \in H \), with least empirical error, has true error \(\epsilon \).

Fundamental Questions

Questions in Statistical Learning Theory:

- Trying to learn a classifier from \(H \)?
- How good is the learned rule after \(m \) examples?
- How many examples is needed for the learned rule to be accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:

- What kind of a guarantee on the true error of a classifier can I get if I know its training error?
- Is there a universally best learning algorithm?
- What can be learned and what cannot?
- How many examples is needed for the learned rule to be accurate?
- Trying to learn a classifier from \(H \)?

No Consistent Hypothesis

A reasonable learning Algorithm: Given a sample set \(S \) and hypothesis class \(h \in H \), return \(h_\delta = \arg\min_{h \in H} \text{err}_S(h) \).

What can go wrong?

Best hypothesis on distribution \(h^* = \arg\min_{h \in H} \text{err}_S(h) \).

The true error of \(h_\delta \) is within \(\epsilon \) of the optimal true error, \(\text{err}_S(h^*) \), if For all \(h \in H \), we have \(|\text{err}_S(h) - \text{err}_S(h^*)| \leq \epsilon \).

Example: Smart Investing

Task: Pick stock analyst based on past performance.

Experiment:

- Review analyst prediction “next day up/down” for past 10 days. Pick analyst that makes the fewest errors.
- Situation 1:
 - 2 stock analyst (A1,A2), A1 makes 5 errors
- Situation 2:
 - 5 stock analysts (A1,A2,B1,B2,B3), B2 best with 1 error
- Situation 3:
 - 1005 stock analysts (A1,A2,B1,B2,B3,C1,...,C1000), C543 best with 0 errors

Question: Which analysts are you most confident in, A1, B2, C543?
Infinite Hypothesis Classes

Linear thresholds in

\[w \]

Thresholds on the line

Neural Networks

\[W_1, W_2, \ldots \]

Intervals on the real line

Sample Complexity bounds for finite hypothesis spaces become meaningless:

\[\frac{1}{\varepsilon} \left(\ln(|\mathcal{H}|) + \ln \left(\frac{1}{\delta} \right) \right) \]

\[\frac{2}{\varepsilon^2} \left(\ln(|\mathcal{H}|) + \ln \left(\frac{1}{\delta} \right) \right) \]

Example 1: Growth Function

What is \(H[m] \) for thresholds on a line:

- \(h_x(x) = 1 \) if \(x \geq w \) and \(-1\) otherwise.
- \(H \) is infinitely large
- \(H[m] \)

\[w \in \mathbb{R} \]

\[_+ _+ _+ _+ _+ _+ _+ _+ _+ _+ \}

- For any \(m \) points, \(H[m] \) is the number of intervals they divide the line to, which is at most \(m + 1 \ll 2^m \).

Example 2: Growth Functions

What is \(H[m] \) for intervals on the line:

- \(h_x(x) = 1 \) if \(w' \geq x \geq w \) and \(-1\) otherwise
- \(H \) is infinitely large

\[H[m] = m \choose 0 + m \choose 1 + m \choose 2 + \cdots + m \choose k = 1 + m + \frac{m(m-1)}{2} = O(m^2) \ll 2^m \]

- Where \(m \choose k \) is the number of ways we can choose a subset of size \(k \) from a set of \(m \) items.

Sample Complexity – growth Function

Let \(m \geq \frac{2}{\varepsilon} \left(\ln(|\mathcal{H}|) + \ln \left(\frac{1}{\delta} \right) \right) \) for some constant \(c_0 \).

For any instance space \(X \), labels \(Y = \{-1, 1\} \), distribution \(P \) on \(X \times Y \), with probability \(1 - \delta \) over i.i.d draws of set \(S \) of \(m \) samples, we have any \(h \in H \) that has \(0 \) empirical error, has true error of \(\text{err}_P(h) \leq \varepsilon \).

- Difficult to interpret:
 \[m \geq \Omega \left(\frac{\ln(|\mathcal{H}|) + \ln \left(\frac{1}{\delta} \right)}{\varepsilon} \right) \]

- If \(H[m] = 2^m \), the sample complexity is Impossible to learn from samples.

VC Dimension

Shattering and VC Dimension

\(H \) shatters a sample set \(S \) if \(\|H[S]\| = 2^{|S|} \).

VC Dimension of \(H \) is the size of the largest set \(S \) that can be shattered by \(H \).

- \(\text{VCDim}(H) \): Largest \(m \) for which \(H[m] = 2^m \).

VC Dimension is roughly the point where the growth function stops being exponential and becomes polynomial.

- When is learning from samples possible?
 - \(\text{VCDim}(H) = \infty \) then \(H[m] = 2^m \) for all \(m \)
 - \(\text{VCDim}(H) = \delta \) then \(H[m] < O(m^\delta) \) for all \(m \)
 - \(\text{VCDim}(H) = \delta \) then \(H[m] < O(m^\delta) \) for all \(m \)

 We can learn!