Machine Learning for Intelligent Systems

Lecture 18: Statistical Learning Theory 2

Reading: UML 6

Instructors: Nika Haghtalab (this time) and Thorsten Joachims
Fundamental Questions

Questions in Statistical Learning Theory:
• Trying to learn a classifier from H?
• How good is the learned rule after m examples?
• How many examples is needed for the learned rule to be accurate?
• What can be learned and what cannot?
• Is there a universally best learning algorithm?

In particular, we will address:
• What kind of a guarantee on the true error of a classifier can I get if I know its training error?
Sample Complexity – 0 Empirical Error

Theorem: Sample Complexity (zero empirical error)

Let \(m \geq \frac{1}{\epsilon} \left(\ln(|H|) + \ln \left(\frac{1}{\delta} \right) \right) \). For any instance space \(X \), labels \(Y = \{-1, 1\} \), distribution \(P \) on \(X \times Y \), with probability \(1 - \delta \) over i.i.d draws of set \(S \) of \(m \) samples, we have

Any \(h \in H \) that has 0 empirical error, has true error of \(\text{err}_P(h) \leq \epsilon \).

Learning Algorithm: Given a sample set \(S \) and hypothesis class \(h \in H \), if there is a \(h_S \in H \) that is consistent with \(S \), return \(h_S \). (Eqv. Return \(h_S \) in version space \(\text{VS}(H, S) \))
No Consistent Hypothesis

A reasonable learning Algorithm: Given a sample set S and hypothesis class $h \in H$, return $h_S = \operatorname{argmin}_{h \in H} err_S(h)$.

What can go wrong?

Best hypothesis on distribution $h^* = \operatorname{argmin}_{h \in H} err_P(h)$.

The true error of h_S is within ε of the optimal true error, $\operatorname{err}_P(h^*)$, if

For all $h \in H$, we have $|\operatorname{err}_S(h) - \operatorname{err}_P(h)| \leq \frac{\varepsilon}{2}$.
Sample Complexity – General

For any instance space X, labels $Y = \{-1, 1\}$, and distribution P on $X \times Y$, consider a set S of m i.i.d. samples from P. We have

$$\Pr_{S \sim P^m} \left[\exists h \in H, \quad |err_S(h) - err_P(h)| > \frac{\varepsilon}{2} \right] \leq 2|H|e^{-\varepsilon^2 m/2}.$$

Theorem: Sample Complexity (non-zero empirical error)

Let $m \geq \frac{2}{\varepsilon^2} \left(\ln(|H|) + \ln \left(\frac{2}{\delta} \right) \right)$. For any instance space X, labels $Y = \{-1, 1\}$, distribution P on $X \times Y$, with probability $1 - \delta$ over i.i.d draws of set S of m samples, $h_S \in H$, with least empirical error, has true error

$$err_P(h_S) \leq err_P(h^*) + \varepsilon.$$
Example: Smart Investing

- **Task:** Pick stock analyst based on past performance.

- **Experiment:**
 - Review analyst prediction “next day up/down” for past 10 days. Pick analyst that makes the fewest errors.
 - Situation 1:
 - 2 stock analyst \{A1,A2\}, A1 makes 5 errors
 - Situation 2:
 - 5 stock analysts \{A1,A2,B1,B2,B3\}, B2 best with 1 error
 - Situation 3:
 - 1005 stock analysts \{A1,A2,B1,B2,B3,C1,...,C1000\}, C543 best with 0 errors

- **Question:** Which analysts are you most confident in, A1, B2, C543?
Infinite Hypothesis Classes

Linear thresholds in

Thresholds on the line

Neural Networks

Intervals on the real line

Sample Complexity bounds for finite hypothesis spaces become meaningless:

\[
\frac{1}{\epsilon} \left(\ln(|H|) + \ln \left(\frac{1}{\delta} \right) \right) \quad \frac{2}{\epsilon^2} \left(\ln(|H|) + \ln \left(\frac{2}{\delta} \right) \right)
\]
Effective Number of Hypotheses

How many different ways hypotheses in H label the sample set S?

Most complex: Many unique rows

2^m unique rows

<table>
<thead>
<tr>
<th>H</th>
<th>S</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td>...</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_3</td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\vdots

Least complex: Just one unique row

1 unique row

<table>
<thead>
<tr>
<th>H</th>
<th>S</th>
<th>x_1</th>
<th>x_2</th>
<th>x_3</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_1</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_2</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_3</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h_4</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Growth function

The set all m-tuples produced by hypotheses in H on the sample set S

$$H[S] = \left\{ (h(x_1), h(x_2), h(x_3), \ldots, h(x_m)) \right\}_{h \in H}$$

Growth function: $H[m] = \max_{|S|=m} |H[S]|$ is the largest number of unique rows that H can produce on any set of m elements.
Example 1: Growth Function

What is $H[m]$ for thresholds on a line:

- $h_w(x) = 1$ if $x \geq w$ and -1 otherwise.
- H is infinitely large
- $H[m]$?

For any m points, $H[m]$ is the number of intervals they divide the line to, which is at most $m + 1 \ll 2^m$.
Example 2: Growth Functions

What is $H[m]$ for intervals on the line:

- $h_{w,w'}(x) = 1$ if $w' \geq x \geq w$ and -1 otherwise
- H is infinitely large

\[H[m] = \binom{m}{0} + \binom{m}{1} + \binom{m}{2} = 1 + m + \frac{m(m-1)}{2} = O(m^2) \ll 2^m \]

- Where $\binom{m}{k}$ is the number of ways we can choose a subset of size k from a set of m items.

\[\binom{m}{k} = \frac{m!}{(m-k)!k!} \]
Sample Complexity – growth Function

Let \(m \geq \frac{c_0}{\epsilon} \left(\ln(\mathcal{H}[2m]) + \ln \left(\frac{1}{\delta} \right) \right) \) for some constant \(c_0 \). For any instance space \(X \), labels \(Y = \{-1, 1\} \), distribution \(P \) on \(X \times Y \), with probability \(1 - \delta \) over i.i.d draws of set \(S \) of \(m \) samples, we have Any \(h \in H \) that has 0 empirical error, has true error of \(err_P(h) \leq \epsilon \).

- Difficult to interpret:
 \[
 m \geq \Omega \left(\frac{\ln(\mathcal{H}[2m])}{\epsilon} \right)
 \]

- If, \(\mathcal{H}[m] = 2^m \), the sample complexity is
 Impossible to learn from samples.
 \[
 m \geq \Omega \left(\frac{m}{\epsilon} \right)
 \]

VC Dimension
VC Dimension

Shattering and VC Dimension

H shatters a sample set *S* if \(|H[S]| = 2^{|S|}\).

VC Dimension of *H* is the size of the largest set *S* that can be shattered by *H*. \(\Leftrightarrow\) **VCDim**(*H*): Largest *m* for which \(H[m] = 2^m\).

VC Dimension is roughly the point where the growth function stops being exponential and becomes polynomial.

When is learning from samples possible?

- If **VCDim**(*H*) = \(\infty\) then \(H[m] = 2^m\) for all *m*
 \(\Rightarrow\) It would be impossible to learn!
- If **VCDim**(*H*) = *d* then \(H[m] < O(m^d)\) for all *m*
 \(\Rightarrow\) We can learn!