Regularized Linear Models

CS4780/5780 – Machine Learning
Fall 2019

Nika Haghtalab & Thorsten Joachims
Cornell University

Reading: UML 13.1, 9.2, 9.3
Discriminative ERM Learning

- **Modeling Step:**
 - Select classification rules H to consider (hypothesis space, features)

- **Training Principle:**
 - Given training sample $(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_n, y_n)$
 - Find h from H with lowest training error → Empirical Risk Minimization
 - Argument: low training error leads to low prediction error, if overfitting is controlled.
 → generalization error bounds

- **Examples:** SVM, decision trees, Perceptron
Generative vs. Conditional vs. ERM

- **Empirical Risk Minimization**
 - Find $h = \arg\min_{h \in H} Err_S(h)$ s.t. overfitting control
 - **Pro:** directly estimate decision rule
 - **Con:** need to commit to loss, input, and output before training

- **Discriminative Conditional Model**
 - Find $P(Y|X)$, then derive $h(x)$ via Bayes rule
 - **Pro:** not yet committed to loss during training
 - **Con:** need to commit to input and output before training; learning conditional distribution is harder than learning decision rule

- **Generative Model**
 - Find $P(X,Y)$, then derive $h(x)$ via Bayes rule
 - **Pro:** not yet committed to loss, input, or output during training; often computationally easy (under strong assumptions)
 - **Con:** Needs to model dependencies in X
Bayes Decision Rule

• Assumption:
 – Learning task \(P(X,Y) = P(Y|X) \ P(X) \) is known

• Question:
 – Given instance \(x \), how should it be classified to minimize prediction error?

• Bayes Decision Rule (for zero/one loss):
 \[
 h_{bayes}(\tilde{x}) = \arg\max_{y \in Y} [P(Y = y|X = \tilde{x})]
 \]

• Bayes Decision Rule (general)
 \[
 h_{bayes}(\tilde{x}) = \arg\min_{y \in Y} \left[\sum_{y'} \Delta(y', y) \ P(Y = y'|X = \tilde{x}) \right]
 \]
Bayes Risk

• Given knowledge of $P(X,Y)$, the true error of the best possible h is

\[
Err_P(h_{\text{bayes}}) = E_{x \sim P(x)}\left[\min_{y \in Y} (1 - P(Y = y|X = x))\right]
\]

for the 0/1 loss.
Logistic Regression

• Data:
 - \(S = ((x_1, y_1) \ldots (x_n, y_n)) \), \(x \in \mathbb{R}^N \) and \(y \in \{-1, +1\} \)
• Model:
 - \(P(y|x, w) = Ber(y|\text{sigmoid}(w \cdot x)) \)
• Training objective:
 \[
 \hat{w} = \arg\min_w \sum_{i=1}^{n} \log(1 + \exp(-y_i w \cdot x_i))
 \]
• Algorithm:
 - Stochastic gradient descent, Newton, etc.
Regularized Logistic Regression

• Data:
 - \(S = ((x_1, y_1) \ldots (x_n, y_n)) \), \(x \in \mathbb{R}^N \) and \(y \in \{-1, +1\} \)

• Model:
 - \(P(y|x, w) = Ber(y|\text{sigm}(w \cdot x)) \), \(P(w) = N(w|0, \Sigma) \)

• Training objective:
 \[
 \hat{w} = \arg\min_w \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \log(1 + \exp(-y_i w \cdot x_i))
 \]

• Algorithm:
 - Stochastic gradient descent, Newton, etc.
Logistic vs. Hinge Loss

Plot via www.desmos.com

\[
\max(0.1 - x)
\]

\[
\ln(1 + \exp(-x))
\]
Ridge Regression

- **Data:**
 \[S = ((x_1, y_1) \ldots (x_n, y_n)), \quad x \in \mathbb{R}^N \text{ and } y \in \mathbb{R} \]

- **Model:**
 \[P(y|x, w) = N(y|w \cdot x, \Sigma), \quad P(w) = N(w|0, \Sigma) \]

- **Training objective:**
 \[\tilde{w} = \arg\min_w \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} (w \cdot x_i - y_i)^2 \]

- **Algorithm:**
 \[\tilde{w} = (\text{diag}(C) + X^T X)^{-1} X^T y \]
Generative vs. Conditional vs. ERM

- **Empirical Risk Minimization**
 - Find $h = \arg\min_{h \in H} \text{Err}_S(h)$ s.t. overfitting control
 - Pro: directly estimate decision rule
 - Con: need to commit to loss, input, and output before training

- **Discriminative Conditional Model**
 - Find $P(Y|X)$, then derive $h(x)$ via Bayes rule
 - Pro: not yet committed to loss during training
 - Con: need to commit to input and output before training; learning conditional distribution is harder than learning decision rule

- **Generative Model**
 - Find $P(X,Y)$, then derive $h(x)$ via Bayes rule
 - Pro: not yet committed to loss, input, or output during training; often computationally easy (under strong assumptions)
 - Con: Needs to model dependencies in X
Discriminative Training of Linear Rules

\[
\min_{w,b} R(w) + C \frac{1}{n} \sum_{i=1}^{n} L(w \cdot x_i + b, y_i)
\]

- **Soft-Margin SVM**
 - \(R(w) = \frac{1}{2} w \cdot w \)
 - \(L(\bar{y}, y_i) = \max(0, 1 - y_i \bar{y}) \)
- **Perceptron**
 - \(R(w) = 0 \)
 - \(L(\bar{y}, y_i) = \max(0, -y_i \bar{y}) \)
- **Linear Regression**
 - \(R(w) = 0 \)
 - \(L(\bar{y}, y_i) = (y_i - \bar{y})^2 \)
- **Ridge Regression**
 - \(R(w) = \frac{1}{2} w \cdot w \)
 - \(L(\bar{y}, y_i) = (y_i - \bar{y})^2 \)
- **Lasso**
 - \(R(w) = \frac{1}{2} \sum |w_i| \)
 - \(L(\bar{y}, y_i) = (y_i - \bar{y})^2 \)
- **Regularized Logistic Regression / Conditional Random Field**
 - \(R(w) = \frac{1}{2} w \cdot w \)
 - \(L(\bar{y}, y_i) = \log(1 + e^{-y_i \bar{y}}) \)