Machine Learning for
Intelligent Systems

Lecture 6: Linear Classifiers and Perceptron

Reading: UML 9.1

Instructors: Nika Haghtalab (this time) and Thorsten Joachims



Hypothesis Spaces
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Encoding in Euclidean Space

Represent apples as vectors in R%.
« Old:
X = {A, B}x{red, green}x{large, medium, small}x{crunchy, soft}.
* New:
2> X € R*.
xq farm:A - 1,B - —1
X, color: red — 1, green - —1
X3 size: large — 1, medium — 0, small - —1
x4 firmness: crunchy — 1, soft » —1.
2> Y ={—-1,+1}: Tasty » +1, Not Tasty » —1

Reuters Business News text classification:

* 9947 keywords (more accurately, word “stems”)

e X =1{0,1}°"*7, where x; = 1 if the keyword i appears in document.
e Y={-1,+1}



Linear Classifiers

For a vector w € R% and b € R, the hypothesis hy ,: R? - R defined
bellow is called a linear classifier/linear predictor/halfspace,

N +1  w-Xx+b>0

Recall: Dot products
/ Fo ) \

or two vectors: w = (Wy, Wy, W3, ..., W,,) and X = (xl,xz,xg,, .

© WX =Wix; +WoXy +WiXs + o+ WXy, ||v_v’||—1

* w - x is the (signed) length of the

projection of X on unit vector w.
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hi p (X) = sign(wW - X + b) = {

Linear Classifiers

For a vector w € R% and b € R, the hypothesis hy ,: R? - R defined
bellow is called a linear classifier/linear predictor/halfspace
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Homogenous linear
classifier: b = 0
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Linear Classifiers in all dimensions

* One-dimension: h,, ,(x) = sign(wx + b) o
—> Decision boundary: point —b

 Two-dimension: hy ,(x) = sign(w - X + b) w
—> Decision boundary: line
b
* d-dimension: hy; ,(x) = sign(w - X + b) WoZ4b=0

- Decision boundary: hyperplanew - x + b = 0



Representational Power

Assume that x{, x, take are binary values 0, 1. Represent the following
using linear thresholds.

¢ xl/\xz
° x1Vx2

e x1 D x,
- @ represent XOR, where x; @ x, = 1 when exactly one of x;
and x, is set to 1.



Homogenous vs. Non-homogenous

Any d-dimensional learning problem for non-homogenous linear
classifiers has a homogenous form in (d+1) dimension.

Non-Homogenous
HS® = {hy | W € RY, b € R}

Homogenous
d+1 — =/ d+1
HShomogenous — {hWIl w' € R }

3 ¥ = (% +1)
W, b W' = (W, b)
W%+ b W R =w-Z+b

Without loss of generality, focus on homogenous linear classifiers.




Find a consistent classifier

If there is a homogeneous linear classifier that is consistent with

{(X1,v1), X2,V2), e, (X, Ym) 3}, how can we find it?

On the correct side,

with wiggle room
A

d —>% = - r — - )
Unit vector w* is such that for all (x;,y;), y;(w* - x;) =y > 0.

G2 D1 Gy +1)

We want to find a w such that
yl(W . fl) > (0 for all (.’)_C)l',yi).

N J
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Can be done with a linear program




Improving a linear classifier

Start with a guess and improve it.

(x,+1) |

@ ~1) 4

Move away from negative Move towards positive
misclassified points misclassified points
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/ Perceptron (homogeneous & batch) \

Input: Training data set {(X1, ¥1), (X2, V2), «-o, X, Vi) }
Initialize w(® = (0,...,0), t =0

While there is i € [m], such that y; (W(t) - J?i) < 0 then,

- Y ] .
misclassified

. WD — B0 4 Vi % wl) + %; for positive instances
w® — %; for negative instances

e te—t+1
End While
Output w®
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Frank Rosenblatt
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Example: Reuters Text Classification
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