Machine Learning for Intelligent Systems

Lecture 6: Linear Classifiers and Perceptron

Reading: UML 9.1

Instructors: Nika Haghtalab (this time) and Thorsten Joachims

Hypothesis Spaces

$$(color = red) \land (size = small)$$

AND of feature-values

$$(color = red) \lor (size = small)$$

OR of feature-values

Decision Trees

Linear Classifiers

Encoding in Euclidean Space

Represent apples as vectors in \mathbb{R}^d .

Old:
 X = {A, B}×{red, green}×{large, medium, small}×{crunchy, soft}.
 New:

```
\rightarrow X ⊆ \mathbb{R}^4.

x_1 farm: A \rightarrow 1, B \rightarrow −1

x_2 color: red \rightarrow 1, green \rightarrow −1

x_3 size: large \rightarrow 1, medium \rightarrow 0, small \rightarrow −1

x_4 firmness: crunchy \rightarrow 1, soft \rightarrow −1.

\rightarrow Y = {-1, +1}: Tasty \rightarrow +1, Not Tasty \rightarrow −1
```

Reuters Business News text classification:

- 9947 keywords (more accurately, word "stems")
- $X = \{0,1\}^{9947}$, where $x_i = 1$ if the keyword i appears in document.
- $Y = \{-1, +1\}.$

Linear Classifiers

For a vector $\vec{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, the hypothesis $h_{\vec{w},b} : \mathbb{R}^d \to \mathbb{R}$ defined bellow is called a **linear classifier/linear predictor/halfspace**,

$$h_{\overrightarrow{w},b}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x} + b) = \begin{cases} +1 & \overrightarrow{w} \cdot \overrightarrow{x} + b > 0 \\ -1 & \overrightarrow{w} \cdot \overrightarrow{x} + b \le 0 \end{cases}$$

Recall: Dot products

For two vectors: $\vec{w} = (w_1, w_2, w_3, ..., w_n)$ and $\vec{x} = (x_1, x_2, x_3, ..., x_n)$.

- $\vec{w} \cdot \vec{x} = w_1 x_1 + w_2 x_2 + w_3 x_3 + \dots + w_n x_n$
- $\vec{w} \cdot \vec{x}$ is the (signed) length of the

projection of \vec{x} on unit vector \vec{w} .

Linear Classifiers

For a vector $\vec{w} \in \mathbb{R}^d$ and $b \in \mathbb{R}$, the hypothesis $h_{\vec{w},b} : \mathbb{R}^d \to \mathbb{R}$ defined bellow is called a **linear classifier/linear predictor/halfspace**

$$h_{\overrightarrow{w},b}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x} + b) = \begin{cases} +1 & \overrightarrow{w} \cdot \overrightarrow{x} + b > 0 \\ -1 & \overrightarrow{w} \cdot \overrightarrow{x} + b \le 0 \end{cases}$$

Linear Classifiers in all dimensions

- One-dimension: $h_{w,b}(x) = \text{sign}(wx + b)$
 - → Decision boundary: point

- Two-dimension: $h_{\overrightarrow{w},b}(x) = \text{sign}(\overrightarrow{w} \cdot \overrightarrow{x} + b)$
 - → Decision boundary: line

- d-dimension: $h_{\overrightarrow{w},b}(x) = \text{sign}(\overrightarrow{w} \cdot \overrightarrow{x} + b)$
 - \rightarrow Decision boundary: hyperplane $\vec{w} \cdot \vec{x} + b = 0$

Representational Power

Assume that x_1, x_2 take are binary values 0, 1. Represent the following using linear thresholds.

• $x_1 \wedge x_2$

• *x*₁ ∨ *x*₂

- $x_1 \oplus x_2$
 - \rightarrow \oplus represent XOR, where $x_1 \oplus x_2 = 1$ when exactly one of x_1 and x_2 is set to 1.

Homogenous vs. Non-homogenous

Any d-dimensional learning problem for **non-homogenous linear classifiers** has a **homogenous** form in (d+1) dimension.

Non-Homogenous $HS^{d} = \{h_{\overrightarrow{w}, b} \overrightarrow{w} \in \mathbb{R}^{d}, b \in \mathbb{R}\}$	Homogenous $HS_{homogenous}^{d+1} = \{h_{\overrightarrow{w}'} \overrightarrow{w}' \in \mathbb{R}^{d+1}\}$
$ec{\chi}$	$\vec{x}' = (\vec{x}, +1)$
\overrightarrow{w} , b	$\vec{w}' = (\vec{w}, b)$
$\vec{w} \cdot \vec{x} + b$	$\vec{w}' \cdot \vec{x}' = \vec{w} \cdot \vec{x} + b$

Without loss of generality, focus on homogenous linear classifiers.

Find a consistent classifier

If there is a homogeneous linear classifier that is consistent with $\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$, how can we find it?

Unit vector \overrightarrow{w}^* is such that for all $(\overrightarrow{x}_i, y_i)$, $y_i(\overrightarrow{w}^* \cdot \overrightarrow{x}_i) \ge \gamma > 0$.

We want to find a \vec{w} such that $y_i(\vec{w} \cdot \vec{x}_i) > 0$ for all (\vec{x}_i, y_i) .

Can be done with a linear program

On the correct side.

Improving a linear classifier

Start with a guess and improve it.

Move away from negative misclassified points

Move towards positive misclassified points

Perceptron (homogeneous & batch)

Frank Rosenblatt

@ Cornell!

Input: Training data set $\{(\vec{x}_1, y_1), (\vec{x}_2, y_2), ..., (\vec{x}_m, y_m)\}$ **Initialize** $\vec{w}^{(0)} = (0, ..., 0), t = 0$

While there is $i \in [m]$, such that $y_i(\vec{w}^{(t)} \cdot \vec{x}_i) \leq 0$ then,

•
$$\vec{w}^{(t+1)} = \vec{w}^{(t)} + y_i \vec{x}_i$$
 $\begin{cases} \vec{w}^{(t)} + \vec{x}_i & \text{for positive instances} \\ \vec{w}^{(t)} - \vec{x}_i & \text{for negative instances} \end{cases}$

•
$$t \leftarrow t + 1$$

End While

Output $\overrightarrow{w}^{(t)}$

Example: Reuters Text Classification

