Clustering:
Similarity-Based Clustering

CS4780/5780 – Machine Learning
Fall 2014
Thorsten Joachims
Cornell University

Reading: Manning/Raghavan/Schuetze,
Chapters 16 (not 16.3) and 17
(http://nlp.stanford.edu/IR-book/)

Outline

• Supervised vs. Unsupervised Learning
• Hierarchical Clustering
 – Hierarchical Agglomerative Clustering (HAC)
• Non-Hierarchical Clustering
 – K-means
 – Mixtures of Gaussians and EM-Algorithm

Supervised Learning
vs. Unsupervised Learning

• Supervised Learning
 – Classification: partition examples into groups according to pre-defined categories
 – Regression: assign value to feature vectors
 – Requires labeled data for training

• Unsupervised Learning
 – Clustering: partition examples into groups when no pre-defined categories/classes are available
 – Outlier detection: find unusual events (e.g. hackers)
 – Novelty detection: find changes in data
 – Only instances required, but no labels

Applications of Clustering

• Exploratory data analysis
• Cluster retrieved documents
 – to present more organized and understandable results to user → "diversified retrieval"
• Detecting near duplicates
 – Entity resolution
 • E.g. "Thorsten Joachims" vs. "Thorsten B Joachims"
 – Cheating detection
• Automated (or semi-automated) creation of taxonomies
 – e.g. Yahoo, DMOZ
• Compression

Clustering

• Partition unlabeled examples into disjoint subsets of clusters, such that:
 – Examples within a cluster are similar
 – Examples in different clusters are different
• Discover new categories in an unsupervised manner (no sample category labels provided).

Applications of Clustering
Clustering Example

Clustering Example

Clustering Example

Clustering Example

Clustering Example

Clustering Example

Similarity (Distance) Measures

• Euclidian distance (L_2 norm):
$$L_2(\vec{x}, \vec{x}') = \sqrt{\sum_{i=1}^{N} (x_i - x'_i)^2}$$

• L_1 norm:
$$L_1(\vec{x}, \vec{x}') = \sqrt{\sum_{i=1}^{N} |x_i - x'_i|}$$

• Cosine similarity:
$$\cos(\vec{x}, \vec{x}') = \frac{\vec{x} \cdot \vec{x}'}{\|\vec{x}\| \|\vec{x}'\|}$$

• Kernels
Hierarchical Clustering

- Build a tree-based hierarchical taxonomy from a set of unlabeled examples.

- Recursive application of a standard clustering algorithm can produce a hierarchical clustering.

Hierarchical Agglomerative Clustering (HAC)

- Assumes a similarity function for determining the similarity of two clusters.
- Starts with all instances in a separate cluster and then repeatedly joins the two clusters that are most similar until there is only one cluster.
- The history of merging forms a binary tree or hierarchy.
- Basic algorithm:
 - Start with all instances in their own cluster.
 - Until there is only one cluster:
 - Among the current clusters, determine the two clusters, \(c_i \) and \(c_j \), that are most similar.
 - Replace \(c_i \) and \(c_j \) with a single cluster \(c_i \cup c_j \).

Cluster Similarity

- How to compute similarity of two clusters each possibly containing multiple instances?
 - Single link: Similarity of two most similar members.
 - Complete link: Similarity of two least similar members.
 - Group average: Average similarity between members.

Agglomerative vs. Divisive Clustering

- Agglomerative (bottom-up) methods start with each example in its own cluster and iteratively combine them to form larger and larger clusters.
- Divisive (top-down) separate all examples immediately into clusters.

Single-Link HAC

\[
sim(c_i, c_j) = \max_{x \in c_i, y \in c_j} sim(x, y)
\]

- Can result in "straggly" (long and thin) clusters due to chaining effect.

Complete-Link HAC

\[
sim(c_i, c_j) = \min_{x \in c_i, y \in c_j} sim(x, y)
\]

→ Makes more "tight," spherical clusters.
Computational Complexity of HAC

- In the first iteration, all HAC methods need to compute similarity of all pairs of \(n \) individual instances which is \(O(n^2) \).
- In each of the subsequent \(O(n) \) merging iterations, must find smallest distance pair of clusters \(\text{Maintain heap} \ O(n^2 \log n) \)
- In each of the subsequent \(O(n) \) merging iterations, it must compute the distance between the most recently created cluster and all other existing clusters. Can this be done in constant time such that \(O(n^2 \log n) \) overall?

Computing Cluster Similarity

- After merging \(c_i \) and \(c_j \), the similarity of the resulting cluster to any other cluster, \(c_k \), can be computed by:
 - Single Link:
 - Complete Link:

Group Average Agglomerative Clustering

- Use average similarity across all pairs within the merged cluster to measure the similarity of two clusters.

\[
sim(c_i, c_j) = \frac{1}{c_i \cup c_j \cup c_k} \sum_{(x_j \in c_k)} \sum_{(x_i \in c_j)} \sum_{(x_k \in c_k)} \sim(x_k, y)
\]
- Compromise between single and complete link.

Computing Group Average Similarity

- Assume cosine similarity and normalized vectors with unit length.
- Always maintain sum of vectors in each cluster.

\[
s(c_j) = \sum_{x \in c_j} x
\]
- Compute similarity of clusters in constant time:

\[
\sim(c_i, c_j) = \frac{(s(c_i) + s(c_j)) \big(s(c_i) + s(c_j) - 1 \big)}{\sum_{x \in c_i} |x| + |x_c_j| - 1}
\]

Non-Hierarchical Clustering

- K-means clustering ("hard")
- Mixtures of Gaussians and training via Expectation maximization Algorithm ("soft")