Statistical Learning Theory: Weighted Experts and Bandits
CS4780/5780 – Machine Learning
Fall 2014
Thorsten Joachims
Cornell University
Reading: Mitchell Chapter 7.5

Setting

- Setting
 - N experts named \(H = \{ h_1, ..., h_N \} \)
 - Each expert \(h_i \) takes an action \(y = h_i(x_t) \) in each round \(t \) and incurs loss \(\Delta_{i,t} \)
 - Algorithm can select which expert’s action to follow in each round

• Interaction Model
 - FOR \(t \) from 1 to \(T \)
 - Algorithm selects expert \(h_i \) according to strategy \(A(w_t) \) and follows its action \(y \)
 - Experts incur losses \(\Delta_{i,1} - \Delta_{i,N} \)
 - Algorithm updates \(w_t \) to \(w_{t+1} \) based on \(\Delta_{i,1} - \Delta_{i,N} \)

Expert Learning Model

- Setting
 - \(N \) experts named \(H = \{ h_1, ..., h_N \} \)
 - Binary actions \(y = \{ +1, -1 \} \) given input \(x \), zero/one loss
 - There may be no expert in \(H \) that acts perfectly

• Algorithm
 - Initialize \(w_1 = (1,1, ..., 1) \)
 - FOR \(t = 1 \) TO \(T \)
 - Predict the same \(y \) as majority of \(h_i \) in \(H \), each weighted by \(w_t \)
 - IF \(h_i \) unanimous THEN \(w_{t+1} = w_t \) (tie)
 - ELSE \(w_{t+1} = w_t \cdot y \)
 - Mistake Bound
 - How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Weighted Majority Algorithm

- Setting
 - \(N \) experts named \(H = \{ h_1, ..., h_N \} \)
 - Binary actions \(y = \{ +1, -1 \} \) given input \(x \), zero/one loss
 - There may be no expert in \(H \) that acts perfectly

• Algorithm
 - Initialize \(w_1 = (1,1, ..., 1) \)
 - FOR \(t = 1 \) TO \(T \)
 - Predict the same \(y \) as majority of \(h_i \) in \(H \), each weighted by \(w_t \)
 - IF \(h_i \) unanimous THEN \(w_{t+1} = w_t \) (tie)
 - ELSE \(w_{t+1} = w_t \cdot y \)
 - Mistake Bound
 - How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Expected Regret

- Setting
 - \(N \) experts named \(H = \{ h_1, ..., h_N \} \)
 - Any actions, any loss function
 - There may be no expert in \(H \) that acts perfectly

• Algorithm
 - Initialize \(w_1 = \left(\frac{1}{N}, ..., \frac{1}{N} \right) \)
 - FOR \(t \) from 1 to \(T \)
 - Algorithm randomly picks \(i_t \) from \(P(i_t = i) = w_t \)
 - Experts incur losses \(\Delta_{i,1} - \Delta_{i,N} \)
 - Algorithm updates \(w_t \) for all experts \(i \) as
 \[w_{t+1} = w_t \cdot \exp(-\eta \Delta_{i_t}) \]
 Then normalize \(w_{t+1} \) so that \(\sum_i w_{t+1} = 1 \).

Regret

- Idea
 - \(N \) experts named \(H = \{ h_1, ..., h_N \} \)
 - Compare performance of \(A \) to best expert \(i^* \) in hindsight.

• Regret
 - Overall loss of best expert \(i^* \) in hindsight is
 \[\Delta_{i^*} = \min_{i \in \{1, ..., N\}} \sum_{t=1}^T \Delta_{i,t} \]
 - Loss of algorithm \(A \) at time \(t \) is
 \[\Delta_{A} = \sum_{t=1}^T \Delta_{A(t),t} \]
 - Regret is difference between loss of algorithm and best fixed expert in hindsight
 \[\text{Regret}(T) = \sum_{t=1}^T \Delta_{A(t),t} - \min_{i \in \{1, ..., N\}} \sum_{t=1}^T \Delta_{i,t} \]

Exponentiated Gradient Algorithm for Expert Setting (EG)

• Setting
 - \(N \) experts named \(H = \{ h_1, ..., h_N \} \)
 - Any actions, any loss function
 - There may be no expert in \(H \) that acts perfectly

• Algorithm
 - Initialize \(w_1 = \left(\frac{1}{N}, ..., \frac{1}{N} \right) \)
 - FOR \(t \) from 1 to \(T \)
 - Algorithm randomly picks \(i_t \) from \(P(i_t = i) = w_t \)
 - Experts incur losses \(\Delta_{i,1} - \Delta_{i,N} \)
 - Algorithm updates \(w_t \) for all experts \(i \) as
 \[w_{t+1} = w_t \cdot \exp(-\eta \Delta_{i_t}) \]
 Then normalize \(w_{t+1} \) so that \(\sum_i w_{t+1} = 1 \).
Regret Bound for Exponentiated Gradient Algorithm

• Theorem
 The expected regret of the exponentiated gradient algorithm in the expert setting is bounded by
 \[
 \text{Expected Regret}(T) \leq \Delta^\text{max} \sqrt{2T \log |H|}
 \]
 where \(\Delta^\text{max} = \max \{\Delta_t, i\}\) and
 \[
 \eta = \frac{\sqrt{\log(N)}}{\Delta^2 T}.
 \]

Bandit Learning Model

• Setting
 – \(N\) bandits named \(H = \{h_1, ..., h_N\}\)
 – Each bandit \(h_i\) takes an action in each round \(t\) and incurs loss \(\Delta_t, i\)
 – Algorithm can select which bandit’s action to follow in each round

• Interaction Model
 – FOR \(t\) from 1 to \(T\)
 • Algorithm selects expert \(h_i\) according to strategy \(A_{w_t}\) and follows its action \(y\)
 • Bandits incur losses \(\Delta_t, 1 \ldots \Delta_t, N\)
 • Algorithm incurs loss \(\Delta_t, i\)
 • Algorithm updates \(w_t\) to \(w_{t+1}\) based on \(\Delta_t, i\)

Other Online Learning Problems

• Stochastic Experts
• Stochastic Bandits
• Online Convex Optimization
• Partial Monitoring

Exponentiated Gradient Algorithm for Bandit Setting (EXP3)

• Initialize \(w_1 = (1/N, \ldots, 1/N), y = \min \left\{1, \frac{N \log N}{(e-1)\Delta T}\right\}\)

• FOR \(t\) from 1 to \(T\)
 – Algorithm randomly picks \(i_t\) with probability \(P(i_t) = (1-y)w_t,i + y/N\)
 – Experts (aka Bandits) incur losses \(\Delta_t, 1 \ldots \Delta_t, N\)
 – Algorithm incurs loss \(\Delta_t, i_t\)
 – Algorithm updates \(w_t\) for bandit \(i_t\) as
 \[
 w_{t+1, i_t} = w_{t, i_t} \exp(-\eta \Delta_t, i_t / P(i_t))
 \]
 Then normalize \(w_{t+1}\) so that \(\sum_j w_{t+1, j} = 1\).