Statistical Learning Theory: Expert Learning

CS4780/5780 – Machine Learning
Fall 2014
Thorsten Joachims
Cornell University
Reading: Mitchell Chapter 7.5

Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L using a hypothesis space H with VCDim(H)=d
 - L returns hypothesis ĥ(S) with lowest training error
- Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all \(2^d \) ways using functions from H (shattering).
- Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S of size n, with probability (1-δ) it holds that:

\[
F_{\text{emp}}(ĥ(S)) \leq F_{\text{true}}(ĥ(\mathbb{Z}^d)) + \sqrt{\frac{\ln \left(\frac{\ln (\frac{1}{δ})}{\ln \left(\frac{n^d}{\delta} \right)} \right) + \ln \left(\frac{1}{δ} \right)}{n}}
\]

Outline

- Online learning
- Review of perceptron and mistake bound
- Expert model
 - Halving Algorithm
 - Weighted Majority Algorithm
 - Exponentiated Gradient Algorithm
- Bandit model
 - EXP3 Algorithm

Online Classification Model

- Setting
 - Classification
 - Hypothesis space H with h: X ↦ Y
 - Measure misclassifications (i.e., zero/one loss)
- Interaction Model
 - Initialize hypothesis h ∈ H
 - FOR t from 1 to T
 - Receive \(x_t \)
 - Make prediction \(y_t = h(x_t) \)
 - Receive true label \(y_t \)
 - Record if prediction was correct (e.g., \(y_t = y_t \))
 - Update h

(Online) Perceptron Algorithm

- Input: \(S = (x_1, y_1), ..., (x_n, y_n) \), \(x_i \in \mathbb{R}^d \), \(y_i \in \{-1, 1\} \)
- Algorithm:
 - \(\bar{w}_0 = 0, \bar{x} = 0 \)
 - FOR \(i = 1 \) to \(n \)
 - IF \(y_i (\bar{w}_k \cdot \bar{x}_i) < 0 \) # makes mistake
 - \(\bar{w}_{k+1} = \bar{w}_k + y_i \bar{x}_i \)
 - \(k = k + 1 \)
 - END FOR
- Output: \(\bar{w}_k \)

Perceptron Mistake Bound

Theorem: For any sequence of training examples \(S = (x_1, y_1), ..., (x_n, y_n) \) with

\[
R = \max \| \bar{x}_i \|,
\]
if there exists a weight vector \(\bar{w}_{\text{opt}} \) with \(\| \bar{w}_{\text{opt}} \| = 1 \) and

\[
y_i \left(\bar{w}_{\text{opt}} \cdot \bar{x}_i \right) \geq \delta
\]
for all \(1 \leq i \leq n \), then the Perceptron makes at most

\[
\frac{R^2}{\delta^2}
\]
errors.
Expert Learning Model

- **Setting**
 - N experts named $H = \{h_1, ..., h_N\}$
 - Each expert h_i takes an action $y = h_i(x_t)$ in each round t and incurs loss $\Delta_{i,t}$
 - Algorithm can select which expert’s action to follow in each round

- **Interaction Model**
 - FOR t from 1 to T
 - Algorithm selects expert h_i according to strategy A_{w_t} and follows its action y
 - Experts incur losses $\Delta_{i,1} - \Delta_{i,N}$
 - Algorithm incurs loss $\Delta_{i,t}$
 - Algorithm updates w_t to w_{t+1} based on $\Delta_{i,1} - \Delta_{i,N}$

Halving Algorithm

- **Setting**
 - N experts named $H = \{h_1, ..., h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
 - Perfect expert exists in H

- **Algorithm**
 - $V_{S_1} = H$
 - FOR $t = 1$ TO T
 - Predict the same y as majority of $h_i \in V_{S_t}$
 - $V_{S_{t+1}} = V_{S_t}$ minus those $h_i \in V_{S_t}$ that were wrong

- **Mistake Bound**
 - How many mistakes can the Halving algorithm make before predicting perfectly?