Statistical Learning Theory: PAC Learning

CS4780/5780 – Machine Learning
Fall 2014

Thorsten Joachims
Cornell University

Reading: Mitchell Chapter 7 (not 7.4.4 and 7.5)
Questions in Statistical Learning Theory:
- How good is the learned rule after n examples?
- How many examples do I need before the learned rule is accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:

What is the true error of h if we only know the training error of h?
- Finite hypothesis spaces and zero training error
- Finite hypothesis spaces and non-zero training error
- Infinite hypothesis spaces and VC dimension
Can you Convince me of your Psychic Abilities?

• Game
 – I think of n bits
 – If somebody in the class guesses my bit sequence, that person clearly has telepathic abilities – right?

• Question:
 – If at least one of $|H|$ players guesses the bit sequence correctly, is there any significant evidence that he/she has telepathic abilities?
 – How large would n and $|H|$ have to be?
Discriminative Learning and Prediction Reminder

- Goal: Find h with small prediction error $\text{Err}_P(h)$ over $P(X,Y)$.
- Discriminative Learning: Given H, find h with small error $\text{Err}_{S_{\text{train}}}(h)$ on training sample S_{train}.

- Training Error: Error $\text{Err}_{S_{\text{train}}}(h)$ on training sample.
- Test Error: Error $\text{Err}_{S_{\text{test}}}(h)$ on test sample is an estimate of $\text{Err}_P(h)$.
Definition: A particular instance of a learning problem is described by a probability distribution \(P(X, Y) \).

Definition: A sample \(S = ((x_1, y_1), ..., (x_n, y_n)) \) is independently identically distributed (i.i.d.) according to \(P(X, Y) \).

Definition: The error on sample \(S \) \(Err_S(h) \) of a hypothesis \(h \) is \(Err_S(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h(x_i), y_i) \).

Definition: The prediction/generalization/true error \(Err_P(h) \) of a hypothesis \(h \) for a learning task \(P(X, Y) \) is

\[
Err_P(h) = \sum_{\bar{x} \in X, y \in Y} \Delta(h(\bar{x}), y) P(X = \bar{x}, Y = y).
\]

Definition: The hypothesis space \(H \) is the set of all possible classification rules available to the learner.
Useful Formulas

• Binomial Distribution: The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x|p,n) = \frac{n!}{r!(n-r)!} p^x (1 - p)^{n-x}$$

• Union Bound:

$$P(X_1 = x_1 \lor X_2 = x_2 \lor \cdots \lor X_n = x_n) \leq \sum_{i=1}^{n} P(X_i = x_i)$$

• Unnamed:

$$(1 - \epsilon) \leq e^{-\epsilon}$$
Generalization Error Bound: Finite H, Zero Error Error

• Setting
 – Sample of n labeled instances S_{train}
 – Learning Algorithm L with a finite hypothesis space H
 – At least one $h \in H$ has zero prediction error $\text{Err}_P(h) = 0$ ($\Rightarrow \text{Err}_{S_{\text{train}}}(h) = 0$)
 – Learning Algorithm L returns zero training error hypothesis \hat{h}

• What is the probability that the prediction error of \hat{h} is larger than ε?

\[P(\text{Err}_P(\hat{h}) \geq \varepsilon) \leq \frac{H}{n} e^{-\varepsilon n} \]

Training Sample S_{train}

$S_{\text{train}} (x_1, y_1), \ldots, (x_n, y_n)$

Learner

\[\hat{h} \]

Test Sample S_{test}

$(x_{n+1}, y_{n+1}), \ldots$
Sample Complexity: Finite H, Zero Error

- **Setting**
 - Sample of n labeled instances S_{train}
 - Learning Algorithm L with a finite hypothesis space H
 - At least one $h \in H$ has zero prediction error ($\Rightarrow \text{Err}_{S_{\text{train}}}(h) = 0$)
 - Learning Algorithm L returns zero training error hypothesis \hat{h}

- **How many training examples does L need so that with probability at least (1-δ) it learns an \hat{h} with prediction error less than ϵ?**

$$n > \frac{1}{\epsilon}(\log(|H|) - \log(\delta))$$

Training Sample S_{train}

$(x_1,y_1), \ldots, (x_n,y_n)$

Test Sample S_{test}

$(x_{n+1},y_{n+1}), \ldots$