Discriminative vs. Generative Learning

CS4780/5780 – Machine Learning
Fall 2014

Thorsten Joachims
Cornell University

Reading:
Mitchell, Chapter 6.9 - 6.10
Duda, Hart & Stork, Pages 20-39
Discriminative Learning

• Modeling Step:
 • Select classification rules H to consider (hypothesis space)

• Training Principle:
 • Given training sample $(\vec{x}_1, y_1), \ldots, (\vec{x}_n, y_n)$
 • Find h from H with lowest training error
 → Empirical Risk Minimization
 • Argument: low training error leads to low prediction error, if overfitting is controlled.

• Examples: SVM, decision trees, Perceptron
Discriminative Training of Linear Rules

- Soft-Margin SVM
 - $R(w) = \frac{1}{2} w \cdot w$
 - $\Delta(\bar{y}, y_i) = \max(0, 1 - y_i \bar{y})$

- Perceptron
 - $R(w) = 0$
 - $\Delta(\bar{y}, y_i) = \max(0, -y_i \bar{y})$

- Linear Regression
 - $R(w) = 0$
 - $\Delta(\bar{y}, y_i) = (y_i - \bar{y})^2$

- Ridge Regression
 - $R(w) = \frac{1}{2} w \cdot w$
 - $\Delta(\bar{y}, y_i) = (y_i - \bar{y})^2$

- Lasso
 - $R(w) = \frac{1}{2} \sum |w_i|$
 - $\Delta(\bar{y}, y_i) = (y_i - \bar{y})^2$

- Regularized Logistic Regression / Conditional Random Field
 - $R(w) = \frac{1}{2} w \cdot w$
 - $\Delta(\bar{y}, y_i) = \log(1 + e^{-y_i \bar{y}})$
Bayes Decision Rule

• Assumption:
 – learning task \(P(X,Y) = P(Y|X) \) \(P(X) \) is known

• Question:
 – Given instance \(x \), how should it be classified to minimize prediction error?

• Bayes Decision Rule:

\[
h_{\text{bayes}}(\tilde{x}) = \arg\max_{y \in Y} [P(Y = y|X = \tilde{x})]
\]
Generative vs. Discriminative Models

Process:
- **Generator**: Generate descriptions according to distribution $P(X)$.
- **Teacher**: Assigns a value to each description based on $P(Y|X)$.

Training Examples $\langle x_1, y_1 \rangle, \ldots, \langle x_n, y_n \rangle \sim P(X,Y)$

Discriminative Model
- Select classification rules H to consider (hypothesis space)
- Find h from H with lowest training error
- Argument: low training error leads to low prediction error
- Examples: SVM, decision trees, Perceptron

Generative Model
- Select set of distributions to consider for modeling $P(X,Y)$.
- Find distribution that matches $P(X,Y)$ on training data
- Argument: if match close enough, we can use Bayes’ Decision rule
- Examples: naive Bayes, HMM
Bayes Theorem

• It is possible to “switch” conditioning according to the following rule

• Given any two random variables X and Y, it holds that

\[P(Y = y | X = x) = \frac{P(X = x | Y = y)P(Y = y)}{P(X = x)} \]

• Note that

\[P(X = x) = \sum_{y \in Y} P(X = x | Y = y)P(Y = y) \]
Naïve Bayes’ Classifier (Multivariate)

- Model for each class

\[
P(X = \hat{x} | Y = +1) = \prod_{i=1}^{N} P(X_i = x_i | Y = +1)
\]

\[
P(X = \hat{x} | Y = -1) = \prod_{i=1}^{N} P(X_i = x_i | Y = -1)
\]

- Prior probabilities

\[
P(Y = +1), P(Y = -1)
\]

- Classification rule:

\[
h_{naive}(\hat{x}) = \arg\max_{y \in \{+1,-1\}} \left\{ P(Y = y) \prod_{i=1}^{N} P(X_i = x_i | Y = y) \right\}
\]
Estimating the Parameters of NB

- Count frequencies in training data
 - n: number of training examples
 - n_+ / n_-: number of pos/neg examples
 - $(X_i=x_i, y)$: number of times feature X_i takes value x_i for examples in class y
 - $|X_i|$: number of values attribute X_i can take

- Estimating $P(Y)$
 - Fraction of positive / negative examples in training data
 \[
 \hat{P}(Y = +1) = \frac{n_+}{n} \quad \hat{P}(Y = -1) = \frac{n_-}{n}
 \]

- Estimating $P(X|Y)$
 - Maximum Likelihood Estimate
 \[
 \hat{P}(X_i = x_i|Y = y) = \frac{\#(X_i = x_i, y)}{n_y}
 \]
 - Smoothing with Laplace estimate
 \[
 \hat{P}(X_i = x_i|Y = y) = \frac{\#(X_i = x_i, y) + 1}{n_y + |X_i|}
 \]

<table>
<thead>
<tr>
<th>fever (h,l,n)</th>
<th>cough (y,n)</th>
<th>pukes (y,n)</th>
<th>flu?</th>
</tr>
</thead>
<tbody>
<tr>
<td>high</td>
<td>yes</td>
<td>no</td>
<td>1</td>
</tr>
<tr>
<td>high</td>
<td>no</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>low</td>
<td>yes</td>
<td>no</td>
<td>-1</td>
</tr>
<tr>
<td>low</td>
<td>yes</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>high</td>
<td>no</td>
<td>yes</td>
<td>???</td>
</tr>
</tbody>
</table>