Support Vector Machines: Kernels

CS4780/5780 – Machine Learning
Fall 2014

Thorsten Joachims
Cornell University

Reading: Schoelkopf/Smola Chapter 7.4, 7.6, 7.8
Cristianini/Shawe-Taylor 3.1, 3.2, 3.3.2, 3.4
Problem:
• some tasks have non-linear structure
• no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?
Extending the Hypothesis Space

Idea: add more features

Learn linear rule in feature space.

Example:

The separating hyperplane in feature space is degree two polynomial in input space.
Example

• Input Space: \(\tilde{x} = (x_1, x_2) \) (2 attributes)

• Feature Space: \(\Phi(\tilde{x}) = (x_1^2, x_2^2, x_1, x_2, x_1x_2, 1) \) (6 attributes)
Dual SVM Optimization Problem

• Primal Optimization Problem

minimize: \[P(\mathbf{w}, b, \xi) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} + C \sum_{i=1}^{n} \xi_i \]
subject to: \[\forall_{i=1}^{n} : y_i [\mathbf{w} \cdot \mathbf{x}_i + b] \geq 1 - \xi_i \]
\[\forall_{i=1}^{n} : \xi_i > 0 \]

• Dual Optimization Problem

maximize: \[D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\mathbf{x}_i \cdot \mathbf{x}_j) \]
subject to: \[\sum_{i=1}^{n} y_i \alpha_i = 0 \]
\[\forall_{i=1}^{n} : 0 \leq \alpha_i \leq C \]

• Theorem: If \(\mathbf{w}^* \) is the solution of the Primal and \(\alpha^* \) is the solution of the Dual, then

\[\mathbf{w}^* = \sum_{i=1}^{n} \alpha_i^* y_i \mathbf{x}_i \]
Kernels

• Problem:
 – Very many Parameters!
 – Example: Polynomials of degree p over N attributes in input space lead to $O(N^p)$ attributes in feature space!

• Solution:
 – The dual OP depends only on inner products
 → Kernel Functions $K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b})$

• Example:
 – For $\Phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ calculating $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$ computes inner product in feature space.

→ no need to represent feature space explicitly.
SVM with Kernel

Training:

maximize: \[D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j) \]

subject to:

\[\sum_{i=1}^{n} y_i \alpha_i = 0 \]
\[\forall_{i=1}^{m}: 0 \leq \alpha_i \leq C \]

Classification:

\[h(\vec{x}) = \text{sign} \left(\sum_{i=1}^{n} \alpha_i y_i \Phi(\vec{x}_i) \cdot \Phi(\vec{x}) + b \right) \]

\[= \text{sign} \left(\sum_{i=1}^{n} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b \right) \]

New hypotheses spaces through new Kernels:

- Linear: \(K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b} \)
- Polynomial: \(K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d \)
- Radial Basis Function: \(K(\vec{a}, \vec{b}) = \exp \left(-\gamma [\vec{a} - \vec{b}]^2 \right) \)
- Sigmoid: \(K(\vec{a}, \vec{b}) = \tanh(\gamma [\vec{a} \cdot \vec{b}] + c) \)
Examples of Kernels

Polynomial

\[K(\vec{a}, \vec{b}) = (\vec{a} \cdot \vec{b} + 1)^2 \]

Radial Basis Function

\[K(\vec{a}, \vec{b}) = \exp \left(-\gamma [\vec{a} - \vec{b}]^2 \right) \]
What is a Valid Kernel?

Definition: Let X be a nonempty set. A function is a valid kernel in X if for all n and all $x_1, \ldots, x_n \in X$ it produces a Gram matrix

$$G_{ij} = K(x_i, x_j)$$

that is symmetric

$$G = G^T$$

and positive semi-definite

$$\forall \hat{\alpha}: \hat{\alpha}^T G \hat{\alpha} \geq 0$$
How to Construct Valid Kernels

Theorem: Let K_1 and K_2 be valid Kernels over $X \times X$, $\alpha \geq 0$, $0 \leq \lambda \leq 1$, f a real-valued function on X, $\phi:X \rightarrow \mathbb{R}^m$ with a kernel K_3 over $\mathbb{R}^m \times \mathbb{R}^m$, and K a symmetric positive semi-definite matrix. Then the following functions are valid Kernels

\begin{align*}
K(x,z) &= \lambda \ K_1(x,z) + (1-\lambda) \ K_2(x,z) \\
K(x,z) &= \alpha \ K_1(x,z) \\
K(x,z) &= K_1(x,z) \ K_2(x,z) \\
K(x,z) &= f(x) \ f(z) \\
K(x,z) &= K_3(\phi(x),\phi(z)) \\
K(x,z) &= x^T \ K \ z
\end{align*}
Kernels for Sequences: Two sequences are similar, if they have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For $0 \leq \lambda \leq 1$ consider the following features space

\[
\begin{align*}
\phi(\text{cat}) &= \lambda^2 \quad \lambda^3 \quad \lambda^2 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \\
\phi(\text{car}) &= \lambda^2 \quad 0 \quad 0 \quad 0 \quad 0 \quad \lambda^3 \quad \lambda^2 \quad 0 \\
\phi(\text{bat}) &= 0 \quad 0 \quad \lambda^2 \quad \lambda^2 \quad \lambda^3 \quad 0 \quad 0 \quad 0 \\
\phi(\text{bar}) &= 0 \quad 0 \quad 0 \quad \lambda^2 \quad 0 \quad 0 \quad \lambda^2 \quad \lambda^3
\end{align*}
\]

\[\Rightarrow K(\text{car}, \text{cat}) = \lambda^4, \text{ efficient computation via dynamic programming}\]
Kernels for Non-Vectorial Data

• Applications with Non-Vectorial Input Data
 → classify non-vectorial objects
 – Protein classification (x is string of amino acids)
 – Drug activity prediction (x is molecule structure)
 – Information extraction (x is sentence of words)
 – Etc.

• Applications with Non-Vectorial Output Data
 → predict non-vectorial objects
 – Natural Language Parsing (y is parse tree)
 – Noun-Phrase Co-reference Resolution (y is clustering)
 – Search engines (y is ranking)

→ Kernels can compute inner products efficiently!
Properties of SVMs with Kernels

• Expressiveness
 – SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
 – SVMs with Kernel can represent any sufficiently “smooth” function to arbitrary accuracy (for appropriate choice of kernel)

• Computational
 – Objective function has no local optima (only one global)
 – Independent of dimensionality of feature space

• Design decisions
 – Kernel type and parameters
 – Value of C
SVMs for other Problems

• Multi-class Classification
 – [Schoelkopf/Smola Book, Section 7.6]
• Regression
 – [Schoelkopf/Smola Book, Section 1.6]
• Outlier Detection
• Structured Output Prediction