Outline of Today

- Who we are?
 - Prof: Thorsten Joachims
 - TAs: Daniel Sedra, Shuhan Wang, Karthik Raman, Tobias Schnabel, Jisun Jung, ++
 - Consultants: TBD
- What is learning?
 - Why should a computer be able to learn?
 - Examples of machine learning (ML).
 - What drives research in and use of ML today?
- Syllabus
- Administrivia

(One) Definition of Learning

- Definition [Mitchell]:
 A computer program is said to learn from
 - experience E with respect to some class of
 - tasks T and
 - performance measure P,
 if its performance at tasks in T, as measured by P, improves with experience E.

Textbook and Course Material

- Main Textbooks
 - CS4780 Course Pack from Campus Store
- Additional References (optional)
 - See other references on course web page
- Course Notes
 - Writing on blackboard
 - Slides available on course homepage
 - Video of lecture available from last year

Syllabus

- Instance-Based Learning: k-nearest neighbor, collaborative filtering
- Decision Trees: TDIDT, attribute selection, pruning and overfitting
- Linear Rules: Perceptron, logistic regression, linear regression, duality
- Support Vector Machines: optimal hyperplane, margin, kernels, stability
- Generative Models: naive Bayes, linear discriminant analysis
- Hidden Markov Models: probabilistic model, estimation, Viterbi
- Structured Output Prediction: predicting sequences, rankings, etc.
- Statistical Learning Theory: PAC learning, VC dimension, error bounds
- Online Learning: experts, bandits, online mistake bounds
- Clustering: HAC Clustering, k-means, mixture of Gaussians
- Recommendation: similarity-based methods, matrix factorization, etc.
- ML Experimentation: hypothesis tests, cross validation, resampling

Pre-Requisites and Related Courses

- Pre-Requisites
 - Programming skills (e.g. CS 2110)
 - Basic linear algebra (e.g. MATH 2940)
 - Basic probability theory (e.g. CS 2800)
 - Short exam to test prerequisites (via CMS)
- Related Courses
 - CS4700: Foundations of Artificial Intelligence
 - CS4758: Robot Learning
 - CS4300: Information Retrieval
 - CS4740: Natural Language Processing
 - CS6780: Advanced Machine Learning
 - CS6784: Advanced Topics in Machine Learning
 - CS6740: Advanced Language Technologies
 - CS6782: Probabilistic Graphical Models
Homework Assignments

- **Assignments**
 - 5 homework assignments
 - Some problem sets, some programming and experiments
- **Policies**
 - Assignments are due at the beginning of class on the due date in hardcopy. Code must be submitted via CMS by the same deadline.
 - Assignments turned in late will be charged a 1 percentage point reduction of the cumulated final homework grade for each period of 24 hours for which the assignment is late.
 - Everybody has 5 “free” late days. Use them wisely.
 - No assignments will be accepted after the solutions have been made available (typically 3-5 days after deadline).
 - Typically collaboration of two students (see each assignment for detailed collaboration policy).
 - We run automatic cheating detection. Must state all sources of material used in assignments or project. Please review Cornell Academic Integrity Policy!

Exams and Quizzes

- **In-class Quizzes**
 - A few per semester
 - No longer than 5 minutes
- **Exams**
 - Two Prelim exams
 - October 16 (week of fall break)
 - November 25 (week of thanksgiving break)
 - In class
 - No final exam

Final Project

- **Organization**
 - Self-defined topic related to your interests and research
 - Groups of 3-4 students
 - Each group has TA as advisor
- **Deliverables**
 - Project proposal (week after fall break)
 - Meetings with TA to discuss progress
 - Poster presentation (last week of classes)
 - Project report (December 10)
 - Peer review (December 15)

Grading

- **Deliverables**
 - 2 Prelim Exams (50% of Grade)
 - Final Project (15% of Grade)
 - Homeworaks (~5 assignments) (25% of Grade)
 - Quizzes (in class) (5% of Grade)
 - PreReq Exam (2% of Grade)
 - Participation (3% of Grade)

- **Outlier elimination**
 - For homeworks and quizzes, the lowest grade is replaced by the second lowest grade.

How to Get in Touch

- **Online**
 - Course Homepage (slides, video, references, policies, office hours)
 - Piazza forum (questions and comments)
 - CMS (homeworks and grades)
- **Email Addresses**
 - Thorsten Joachims: tj@cs.cornell.edu
 - Tobias Schnabel: tsv49@cornell.edu [homework and solutions]
 - Karthik Raman: kr339@cornell.edu [projects]
 - Daniel Sedra: dms422@cornell.edu [office hours, piazza, video]
 - Shuhan Wang: sw788@cornell.edu [late submissions, regrades, CMS]
- **Office Hours**
 - Thorsten Joachims:
 - Thursdays 2:40pm – 4:00pm, 418 Gates Hall
 - Other office hours:
 - See course homepage