Structured Output Prediction

CS4780/5780 – Machine Learning
Fall 2013
Thorsten Joachims
Cornell University

Reading:

Discriminative vs. Generative

Bayes Decision Rule
- \(h_{bayes}(x) = \arg\max_{y} P(Y = y | X = x) \)
- \(= \arg\max_{y} \left[P(X = x | Y = y) P(Y = y) \right] \)

Generative:
- Idea: Make assumptions about \(P(X = x | Y = y), P(Y = y) \)
- Method: Estimate parameters of the two distributions, then apply Bayes decision rule.

Discriminative:
- Idea: Define set of prediction rules (i.e. hypotheses) \(H \), then search for \(h \in H \) that best approximates
- Method: find \(h \in H \) that minimizes training error.

Question: Can we train HMM’s discriminately?

Idea for Discriminative Training of HMM

Start:
- \(h_{bayes}(x) = \arg\max_{y} \left[P(Y = y | X = x) \right] \)
- \(= \arg\max_{y} \left[P(X = x | Y = y) P(Y = y) \right] \)

Idea:
- Model \(P(Y = y | X = x) \) with \(\bar{w} \cdot \phi(x, y) \) so that
- \(\left(\arg\max_{y} \left[P(Y = y | X = x) \right] \right) = \left(\arg\max_{y} \left[P(Y = y | X = x) \right] \right) \)

Intuition:
- Tune \(\bar{w} \) so that correct \(y \) has the highest value of \(\bar{w} \cdot \phi(x, y) \)
- \(\phi(x, y) \) is a feature vector that describes the match between \(x \) and \(y \)

Training HMMs with Structural SVM

• Define \(\phi(x, y) \) so that model is isomorphic to HMM
 – One feature for each possible start state
 – One feature for each possible transition
 – One feature for each possible output in each possible state
 – Feature values are counts

Structural Support Vector Machine

• Joint features \(\phi(x, y) \) describe match between \(x \) and \(y \)
• Learn weights \(\bar{w} \) so that \(\bar{w} \cdot \phi(x, y) \) is max for correct \(y \)

Structural SVM Training Problem

Hard-margin optimization problem:
\[
\min_{\bar{w}} \frac{1}{2} \bar{w}^T \bar{w} \\
\text{s.t.} \quad y \in Y \setminus y_1 : \bar{w}^T \Phi(x_1, y_1) \geq \bar{w}^T \Phi(x_1, y) + 1 \\
... \\
\quad y \in Y \setminus y_n : \bar{w}^T \Phi(x_n, y_n) \geq \bar{w}^T \Phi(x_n, y) + 1
\]

• Training Set: \((x_1, y_1), ..., (x_n, y_n) \)
• Prediction Rule: \(h_{svm}(x) = \arg\max_{y} \Phi(x, y) \)
• Optimization:
 – Correct label \(y \) must have higher value of \(\bar{w} \cdot \phi(x, y) \) than any incorrect label \(y \)
 – Find weight vector with smallest norm
Soft-Margin Structural SVM

• Loss function $\Delta(y_i, y)$ measures match between target and prediction.

![Soft-Margin Structural SVM Diagram]

Experiment: Part-of-Speech Tagging

• Task
 - Given a sequence of words x, predict sequence of tags y.
 - $\underbrace{x_1 \ x_2 \ x_3 \ y_1 \ y_2 \ y_3}_{\text{3 The dog chased the cat}} \underbrace{x_4 \ x_5 \ x_6 \ y_4 \ y_5 \ y_6}_{\text{Det N V Det N Det N}}$

• Model
 - Markov model with one state per tag and words as emissions
 - Each word described by ~250,000 dimensional feature vector (all word suffixes/prefixes, word length, capitalization ...)

• Experiment (by Dan Fleisher)
 - Train/test on 7966/1700 sentences from Penn Treebank

![Part-of-Speech Tagging Experiment]

NE Identification

• Identify all named locations, named persons, named organizations, dates, times, monetary

Cutting-Plane Algorithm for Structural SVM

• Input: $(x_1, y_1), \ldots, (x_n, y_n), C, \varepsilon$

 - $S \leftarrow \emptyset$, $\mathcal{W} \leftarrow 0$, $\xi \leftarrow 0$

 - REPEAT
 - FOR $i = 1, \ldots, n$
 - compute $\hat{y} = \arg \max_{y \in Y} \{\Delta(y, \hat{y}) + \omega^T \Phi(x_i, y)\}$
 - IF $\Delta(y_i, \hat{y}) > \omega^T \Phi(x_i, \hat{y}) - \xi$
 - $S \leftarrow S \cup \{y_i\}$
 - $S \leftarrow \{y_i\}$
 - $\Delta(y_i, \hat{y}) - \xi$
 - ENDIF
 - ENDFOR
 - UNTIL S has not changed during iteration

Find most violated constraint

Violated by more than ε?

Polynomial Time Algorithm (SVM-struct)
General Problem: Predict Complex Outputs

• Supervised Learning from Examples
 – Find function from input space X to output space Y
 $$h : X \rightarrow Y$$
 such that the prediction error is low.

• Typical
 – Output space is just a single number
 • Classification: $-1,+1$
 • Regression: some real number

• General
 – Predict outputs that are complex objects

Examples of Complex Output Spaces

• Natural Language Parsing
 – Given a sequence of words x, predict the parse tree y.
 – Dependencies from structural constraints, since y has to be a tree.

Examples of Complex Output Spaces

• Multi-Label Classification
 – Given a (bag-of-words) document x, predict a set of labels y.
 – Dependencies between labels from correlations between labels ("iraq" and "oil" in newswire corpus)

Examples of Complex Output Spaces

• Noun-Phrase Co-reference
 – Given a set of noun phrases x, predict a clustering y.
 – Structural dependencies, since prediction has to be an equivalence relation.
 – Correlation dependencies from interactions.

Examples of Complex Output Spaces

• Scene Recognition
 – Given a 3D point cloud with RGB from Kinect camera
 – Segment into volumes
 – Geometric dependencies between segments (e.g. monitor usually close to keyboard)

Wrap-Up
Classification

- **Discriminative**
 - Decision Trees
 - Perceptron
 - Linear SVMs
 - Kernel SVMs

- **Generative**
 - Multinomial Naïve Bayes
 - Multivariate Naïve Bayes
 - Less Naïve Bayes
 - Linear Discriminant
 - Nearest Neighbor

- **Other Methods**
 - Logical rule learning
 - Online Learning
 - Logistic Regression
 - Neural Networks
 - RBF Networks
 - Boosting
 - Bagging
 - Parametric (Graphical) Models
 - Non-Parametric Models
 - *-Regression
 - *-Multiclass

Structured Prediction

- **Discriminative**
 - Structural SVMs

- **Generative**
 - Hidden Markov Model

- **Other Methods**
 - Maximum Margin Markov Networks
 - Conditional Random Fields
 - Markov Random Fields
 - Bayesian Networks
 - Statistical Relational Learning

Unsupervised Learning

- **Clustering**
 - Hierarchical Agglomerative Clustering
 - K-Means
 - Mixture of Gaussians and EM-Algorithm

- **Other Methods**
 - Spectral Clustering
 - Latent Dirichlet Allocation
 - Latent Semantic Analysis
 - Multi-Dimensional Scaling

- **Other Tasks**
 - Outlier Detection
 - Novelty Detection
 - Dimensionality Reduction
 - Non-Linear Manifold Detection

Other Learning Problems and Applications

- **Recommender Systems, Search Ranking, etc.**

- **Reinforcement Learning and Markov Decision Processes**
 - CS4758 Robot Learning

- **Computer Vision**
 - CS4670 Intro Computer Vision

- **Natural Language Processing**
 - CS4740 Intro Natural Language Processing

Other Machine Learning Courses at Cornell

- INFO 3300 - New course by David Mimno
- CS 4700 - Introduction to Artificial Intelligence
- CS 4780/5780 - Machine Learning
- CS 4758 - Robot Learning
- CS 4782 - Probabilistic Graphical Models
- OR 4740 - Statistical Data Mining
- OR 4740 - Statistical Data Mining
- CS 6756 - Advanced Topics in Robot Learning: 3D Perception
- CS 6780 - Advanced Machine Learning
- CS 6784 - Advanced Topics in Machine Learning
- ORIE 6740 - Statistical Learning Theory for Data Mining
- ORIE 6750 - Optimal learning
- ORIE 6780 - Bayesian Statistics and Data Analysis
- ORIE 6127 - Computational Issues in Large Scale Data-Driven Models
- BTRY 6502 - Computationally Intensive Statistical Inference
- MATH 7740 - Statistical Learning Theory