Statistical Learning Theory: Experts and Bandits

CS4780/5780 – Machine Learning
Fall 2013
Thorsten Joachims
Cornell University
Reading: Mitchell Chapter 7.5

Generalization Error Bound: Infinite H, Non-Zero Error

• Setting
 – Sample of n labeled instances S
 – Learning Algorithm L using a hypothesis space H with VCDim(H) = d
 – L returns hypothesis h_L(S) with lowest training error
• Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering).
• Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S of size n, with probability (1 - δ) it holds that:

\[
\text{Ferr}_{h}(S) \leq \text{Ferr}_{h}(h_L(S)) \leq \frac{ \ln \left(\frac{n}{d} \right) - 1}{\delta} + \frac{\ln \left(\frac{1}{\delta} \right)}{\delta}.
\]

Outline

• Online learning
• Review of perceptron and mistake bound
• Expert model
 – Halving Algorithm
 – Weighted Majority Algorithm
 – Exponentiated Gradient Algorithm
• Bandit model
 – EXP3 Algorithm

Online Classification Model

– Setting
 • Classification
 • Hypothesis space H with h: X → Y
 • Measure misclassifications (i.e. zero/one loss)
– Interaction Model
 • Initialize hypothesis h ∈ H
 • FOR t from 1 to T
 – Receive x_t
 – Make prediction y_t = h(x_t)
 – Receive true label y_t
 – Record if prediction was correct (e.g., y_t = y_t)
 – Update h

(Online) Perceptron Algorithm

• Input: S = ((x_1, y_1), ..., (x_n, y_n)), x_i ∈ X, y_i ∈ {-1, 1}
• Algorithm:
 – w_0 = 0, k = 0
 – FOR i = 1 to n
 – IF y_i (w_{k} · x_i) < 0
 – Make mistake
 – w_{k+1} = w_{k} + y_i x_i
 – k = k + 1
 – ENDFOR
• Output: w_k

Perceptron Mistake Bound

Theorem: For any sequence of training examples S = ((x_1, y_1), ..., (x_n, y_n)) with

\[R = \max \| \tilde{x}_i \|, \]

if there exists a weight vector w_{\text{opt}} with \| w_{\text{opt}} \| = 1 and

\[y_i (w_{\text{opt}} : \tilde{x}_i) \geq \delta \]

for all 1 \leq i \leq n, then the Perceptron makes at most

\[\frac{R^2}{\delta^2} \]

errors.
Expert Learning Model

- Setting
 - N experts named $H = \{h_1, \ldots, h_N\}$
 - Each expert h_i takes an action $y = h_i(x_t)$ in each round t
 - and incurs loss Δ_{h_i}
 - Algorithm can select which expert’s action to follow in each round

- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert h_i according to strategy A_i and follows its action y
 - Experts incur losses $\Delta_{h_1} - \Delta_{h_N}$
 - Algorithm incurs loss Δ_{h_i}
 - Algorithm updates w_t to w_{t+1} based on $\Delta_{h_1} - \Delta_{h_N}$

Halving Algorithm

- Setting
 - N experts named $H = \{h_1, \ldots, h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x_t, zero/one loss
 - Perfect expert exists in H

- Algorithm
 - $V_{S_1} = H$
 - FOR $t = 1$ TO T
 - Predict the same y as majority of $h_i \in V_{S_t}$
 - $V_{S_{t+1}} = V_{S_t}$ minus those $h_i \in V_{S_t}$ that were wrong

Weighted Majority Algorithm

- Setting
 - N experts named $H = \{h_1, \ldots, h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x_t, zero/one loss
 - There may be no expert in H that acts perfectly

- Algorithm
 - Initialize $w_1 = (1, 1, \ldots, 1)$
 - FOR $t = 1$ TO T
 - Predict the same y as majority of $h_i \in H_t$ each weighted by w_t
 - FOR EACH $h_i \in H_t$
 - IF h_i incorrect THEN $w_{t+1} = w_t * 0$
 - ELSE $w_{t+1} = w_t$
 - Mistake Bound
 - How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Regret

- Idea
 - Compare performance to best expert in hindsight

- Regret
 - Expected loss of algorithm A_w at time t is $E_{A_w}[\Delta_i] = \sum_{t=1}^T \Delta_i$
 - for randomized algorithm that picks recommendation of expert i at time t with probability w_t
 - Overall loss of best expert \mathcal{L}^* in hindsight is $\sum_{t=1}^T \Delta_t, \mathcal{L}^*$

- Regret is difference between expected loss of algorithm and best fixed expert in hindsight
 - $\text{Regret}(T) = \sum_{t=1}^T w_t \Delta_t - \min_{i \in [1, N]} \sum_{t=1}^T \Delta_{t, i}, \mathcal{L}^*$

Exponentiated Gradient Algorithm for Expert Setting (EG)

- Setting
 - N experts named $H = \{h_1, \ldots, h_N\}$
 - Any actions, any loss function
 - There may be no expert in H that acts perfectly

- Algorithm
 - Initialize $w_1 = \left(\frac{1}{N}, \frac{1}{N}, \ldots, \frac{1}{N}\right)$
 - FOR t from 1 to T
 - Algorithm randomly picks i_t from $P(i_t = i_t) = w_t$
 - Experts incur losses $\Delta_{i_t} - \Delta_{i_t}$
 - Algorithm incurs loss Δ_{i_t}
 - Algorithm updates w_t for all experts i_t as $w_t(i_t) = w_t(i_t) \exp(-\eta \Delta_{i_t})$
 - Then normalize w_t so that $\sum_{i_t} w_t(i_t) = 1.$

Regret Bound for Exponentiated Gradient Algorithm

- Theorem
 - The regret of the exponentiated gradient algorithm in the expert setting is bounded by
 - $\text{Regret}(T) \leq \Delta \sqrt{2T \log(N)}$
 - where $\Delta = \max \{\Delta_{i, t}\}$ and $\eta = \frac{1}{\Delta \sqrt{2T}}$.
Bandit Learning Model

- Setting
 - N bandits named $H = \{h_1, ..., h_N\}$
 - Each bandit h_i takes an action in each round t and incurs loss $\Delta_{i,t}$
 - Algorithm can select which bandit’s action to follow in each round

- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert h_i according to strategy A_w and follows its action y
 - Bandits incur losses $\Delta_{i,1} - \Delta_{i,N}$
 - Algorithm incurs loss $\Delta_{t,i}$
 - Algorithm updates w_i to w_{i+1} based on $\Delta_{i,t}$

Key difference compared to Expert Model

Exponentiated Gradient Algorithm for Bandit Setting (EXP3)

- Initialize $w_1 = \left(\frac{1}{N}, ..., \frac{1}{N}\right)$, $y = \min \left\{1, \frac{N \log N}{(e-1)\Delta T}\right\}$
- FOR t from 1 to T
 - Algorithm randomly picks i_t with probability
 $P(i_t) = (1 - y)w_{i_t} + y/N$
 - Experts incur losses $\Delta_{t,1} - \Delta_{t,N}$
 - Algorithm incurs loss $\Delta_{t,i}$
 - Algorithm updates w for bandit i_t as
 $w_{t+1,i_t} = w_{t,i_t} \exp \left(-\eta \Delta_{t,i_t}/P(i_t)\right)$
 - Then normalize w_{t+1} so that $\sum_j w_{t+1,j} = 1.$

Other Online Learning Problems

- Stochastic Experts
- Stochastic Bandits
- Online Convex Optimization
- Partial Monitoring