Modeling Sequence Data:

Markov Models

CS4780/5780 – Machine Learning
Fall 2013
Thorsten Joachims
Cornell University

Reading:
Manning/Schütze, Sections 9.1-9.3 (except 9.3.1)
Leeds Online HMM Tutorial (except Forward and Forward/Backward Algorithm)

“Less Naïve” Bayes Classifier

- Example: Classify sentences as insulting / not insulting

<table>
<thead>
<tr>
<th>Test</th>
<th>Insult: 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>I:</td>
<td>(Peter is nice and not stupid)</td>
</tr>
<tr>
<td>II:</td>
<td>(Peter is not nice and stupid)</td>
</tr>
</tbody>
</table>

- Assumption (l words in document)

\[P(X = x | Y = +1) = P(W_i = w_i | W_{i-1} = w_{i-1}, Y = +1) \]

\[P(X = x | Y = -1) = P(W_i = w_i | W_{i-1} = w_{i-1}, Y = -1) \]

- Decision Rule

\[h_{\text{less}}(x) = \arg \max_{y \in \{+1, -1\}} P(Y = y) P(W_i = w_i | W_{i-1} = w_{i-1}, Y = y) \]

Markov Model

- **Definition**
 - Set of States: \(s_1, \ldots, s_k \)
 - Start probabilities: \(P(S_1 = s) \)
 - Transition probabilities: \(P(S_i = s | S_{i-1} = s') \)

- **Random walk on graph**
 - Start in state \(s \) with probability \(P(S_1 = s) \)
 - Move to next state with probability \(P(S_i = s | S_{i-1} = s') \)

- **Assumptions**
 - Limited dependence: Next state depends only on previous state, but no other state (i.e. first order Markov model)
 - Stationary: \(P(S_i = s | S_{i-1} = s') \) is the same for all \(i \)

Part-of-Speech Tagging Task

- Assign the correct part of speech (word class) to each word in a document

 "The OT planet/NN Jupiter/NNP and/CC its/PRP moons/NNS are/VBP in/N effect/NN a/DT mini-solar/JJ system/NN ,/, and/CC Jupiter/NNP itself/PRP is/VBZ often/RB called/VBN a/DT star/NN ,/ and/CC Jupiter/NNP itself/PRP is/VBZ often/RB called/VBN a/DT star/NN that/IN never/RB caught/VBN fire/NN ./"

- Needed as an initial processing step for a number of language technology applications
 - Information extraction
 - Answer extraction in QA
 - Base step in identifying syntactic phrases for IR systems
 - Critical for word-sense disambiguation (WordNet apps)
 - …

Why is POS Tagging Hard?

- **Ambiguity**
 - He will race/VB the car.
 - When will the race/NN end?
 - I bank/VB at CFCU.
 - Go to the bank/NN!

- Average of \(\sim 2 \) parts of speech for each word
 - The number of tags used by different systems varies a lot. Some systems use < 20 tags, while others use > 400.

The POS Learning Problem

- **Example**

<table>
<thead>
<tr>
<th>Sentence</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>I:</td>
<td>(I, bank, of, CFCU)</td>
</tr>
<tr>
<td>II:</td>
<td>(PHP, V, PREP, S)</td>
</tr>
<tr>
<td>III:</td>
<td>(Go, to, the, bank)</td>
</tr>
<tr>
<td>IV:</td>
<td>(V, PREP, DET, X)</td>
</tr>
</tbody>
</table>
Hidden Markov Model for POS Tagging

• States
 – Think about as nodes of a graph
 – One for each POS tag
 – special start state (and maybe end state)
• Transitions
 – Think about as directed edges in a graph
 – Edges have transition probabilities
• Output
 – Each state also produces a word of the sequence
 – Sentence is generated by a walk through the graph

Hidden Markov Model

• States: \(y \in \{s_1, \ldots, s_k\} \)
• Outputs symbols: \(x \in \{o_1, \ldots, o_m\} \)
• Starting probability \(P(Y_1 = y_1) \)
 – Specifies where the sequence starts
• Transition probability \(P(Y_i = y_i \mid Y_{i-1} = y_{i-1}) \)
 – Probability that one states succeeds another
• Output/Emission probability \(P(X_i = x_i \mid Y_i = y_i) \)
 – Probability that word is generated in this state

=> Every output-state sequence has a probability

\[
P(x, y) = \prod_{i=2}^{l} P(x_i \mid y_i) P(y_i \mid y_{i-1})
\]

Estimating the Probabilities

• Given: Fully observed data
 – Pairs of output sequence with their state sequence
• Estimating transition probabilities \(P(Y_i \mid Y_{i-1}) \)

\[
\hat{p}(y_i \mid y_{i-1}) = \frac{\text{# times state } a \text{ follows state } b}{\text{# of times state } b \text{ occurs}}
\]

• Estimating emission probabilities \(P(X_i \mid Y_i) \)

\[
\hat{p}(x_i \mid y_i) = \frac{\text{# times output } a \text{ is observed in state } b}{\text{# of times state } b \text{ occurs}}
\]

• Smoothing the estimates
 – Laplace smoothing -> uniform prior
 – See naive Bayes for text classification
• Partially observed data
 – Expectation Maximization (EM)