Model Selection and Assessment

CS4780/5780 – Machine Learning
Fall 2013
Thorsten Joachims
Cornell University

Reading:
Mitchell Chapter 5
(http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3325)

Outline

- Model Selection
 - Controlling overfitting in decision trees
 - Train, validation, test
 - K-fold cross validation
- Evaluation
 - What is the true error of classification rule h?
 - Is rule h_1 more accurate than h_2?
 - Is learning algorithm A1 better than A2?

Overfitting

![Graph showing overfitting](image)

- Note: Accuracy = 1.0 - Error

Reduced-Error Pruning

![Graph showing reduced-error pruning](image)

Reduced-Error Pruning

- Early Stopping: Stop growing the tree and introduce leaf when splitting no longer “reliable”.
 - Restrict size of tree (e.g., number of nodes, depth)
 - Minimum number of examples in node
 - Threshold on splitting criterion
- Post Pruning: Grow full tree, then simplify.
 - Reduced-error tree pruning
 - Rule post-pruning

Model Selection

![Diagram of model selection process](image)

- Training: Run learning algorithm m times (e.g. different parameters).
- Validation Error: $\text{Errors}_{\text{Err}}(h)$ is an estimate of $\text{Err}(h)$ for each h_i.
- Selection: Use h_i with min $\text{Errors}_{\text{Err}}(h_i)$ for prediction on test examples.
K-fold Cross Validation

- Given
 - Sample of labeled instances S
 - Learning Algorithms A
- Compute
 - Randomly partition S into k equally sized subsets S_1 ... S_k
 - For i from 1 to k
 - Train A on S_1 ... S_i S_{i+1} ... S_k and get \hat{h}.
 - Apply h to S_i and compute $Err(h)$.
- Estimate
 - Average $Err(h)$ is estimate of average prediction error of rules produced by A, namely $E(Err(A(S_{train}))$

Evaluate Learned Hypotheses

- Real-world Process
 - Split S randomly
 - Draw i.i.d.
 - Evaluation: Learner \rightarrow Test Sample S_{test}
 - Learner: \rightarrow S_{train} (incl. ModSel)

- Goal: Find h with small prediction error $Err(h)$ over $P(X)$.
- Question: How good is $Err(h)$ of h found on training sample S_{train}?

- Training Error: $Err_{train}(h)$ on training sample.
- Test Error: $Err_{test}(h)$ is an estimate of $Err(h)$.

Text Classification Example: “Corporate Acquisitions” Results

- Unpruned Tree (ID3 Algorithm):
 - Size 437 nodes
 - Training Error: 0.0%
 - Test Error: 11.0%
- Early Stopping Tree (ID3 Algorithm):
 - Size 299 nodes
 - Training Error: 2.6%
 - Test Error: 9.8%
- Reduced-Error Tree Pruning (C4.5 Algorithm):
 - Size 167 nodes
 - Training Error: 4.0%
 - Test Error: 10.8%
- Rule Post-Pruning (C4.5 Algorithm):
 - Size 164 tests
 - Training Error: 3.1%
 - Test Error: 10.3%

What is the True Error of a Hypothesis?

- Given
 - Sample of labeled instances S
 - Learning Algorithm A
- Setup
 - Partition S randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithm A on S_{train}, result is h.
 - Apply h to S_{test} and compare predictions against true labels.
- Test
 - Error on test sample $Err_{test}(h)$ is estimate of true error $Err(h)$.
 - Compute confidence interval.

Text Classification Example: Results

- Data
 - Training Sample: 2000 examples
 - Test Sample: 600 examples
- Unpruned Tree:
 - Size 437 nodes
 - Training Error: 0.0%
 - Test Error: 11.0%
- Early Stopping Tree:
 - Size 299 nodes
 - Training Error: 2.6%
 - Test Error: 9.8%
- Post-Pruned Tree:
 - Size 167 nodes
 - Training Error: 4.0%
 - Test Error: 10.8%
- Rule Post-Pruning:
 - Size 164 tests
 - Training Error: 3.1%
 - Test Error: 10.3%

Binomial Distribution

- The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is
 \[P(X = x | n, p) = \binom{n}{x} p^x (1-p)^{n-x} \]
- Normal approximation: For $np(1-p)>5$ the binomial can be approximated by the normal distribution with
 - Expected value: $E(X)=np$
 - Variance: $Var(X)=np(1-p)$
- With probability δ, the observation x falls in the interval
 \[z_{\frac{1}{2}} \leq z \leq z_{\frac{1}{2}+\delta} \]

<table>
<thead>
<tr>
<th>z</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.90</th>
<th>0.95</th>
<th>0.98</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.645</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
<td>1.285</td>
<td>1.645</td>
<td>1.965</td>
<td>2.335</td>
<td>2.575</td>
</tr>
</tbody>
</table>
Is Rule h_1 More Accurate than h_2?
(Same Test Sample)
- Given
 - Sample of labeled instances S
 - Learning Algorithms A_1 and A_2
- Setup
 - Randomly partition S into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} result are \hat{h}_1 and \hat{h}_2.
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{\text{test}}(\hat{h}_1)$ and $Err_{\text{test}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_{\text{test}}(\hat{h}_1) = Err_{\text{test}}(\hat{h}_2)$?
 - Null Hypothesis: $Err_{\text{test}}(\hat{h}_1)$ and $Err_{\text{test}}(\hat{h}_2)$ come from binomial distributions with same p.
 - \rightarrow Binomial Sign Test (McNemar’s Test)

Is Rule h_1 More Accurate than h_2?
(Different Test Samples)
- Given
 - Samples of labeled instances S_1 and S_2
 - Learning Algorithms A_1 and A_2
- Setup
 - Randomly partition S_1 into S_{train1} (70%) and S_{test1} (30%)
 - Randomly partition S_2 into S_{train2} (70%) and S_{test2} (30%)
 - Train learning algorithms A_1 on S_{train1} and A_2 on S_{train2} result are \hat{h}_1 and \hat{h}_2.
 - Apply \hat{h}_1 to S_{test1} and \hat{h}_2 to S_{test2} and get $Err_{\text{test1}}(\hat{h}_1)$ and $Err_{\text{test2}}(\hat{h}_2)$.
- Test
 - Decide, if $Err_{\text{test1}}(\hat{h}_1) = Err_{\text{test2}}(\hat{h}_2)$?
 - Null Hypothesis: $Err_{\text{test1}}(\hat{h}_1)$ and $Err_{\text{test2}}(\hat{h}_2)$ come from binomial distributions with same p.
 - \rightarrow t-Test (z-Test) [\rightarrow see Mitchell book]

Is Learning Algorithm A_1 better than A_2?
- Given
 - k samples $S_1, ..., S_k$ of labeled instances, all i.i.d. from $P(X,Y)$.
 - Learning Algorithms A_1 and A_2
- Setup
 - For i from 1 to k
 - Randomly partition S_i into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train} result are \hat{h}_1 and \hat{h}_2.
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{\text{test}}(\hat{h}_1)$ and $Err_{\text{test}}(\hat{h}_2)$.
- Test
 - Decide, if $E_i(Err_{\text{test}}(\hat{h}_1)) = E_i(Err_{\text{test}}(\hat{h}_2))$?
 - Null Hypothesis: $Err_{\text{test}}(A_1(S_{\text{train}}))$ and $Err_{\text{test}}(A_2(S_{\text{train}}))$ come from same distribution over samples S.
 - \rightarrow t-Test (z-Test) or Wilcoxon Signed-Rank Test [\rightarrow see Mitchell book]

Approximation via K-fold Cross Validation
- Given
 - Sample of labeled instances S
 - Learning Algorithms A_1 and A_2
- Compute
 - Randomly partition S into k equally sized subsets $S_1, ..., S_k$
 - For i from 1 to k
 - Train A_1 and A_2 on $S_1, ..., S_{i-1}, S_{i+1}, ..., S_k$ and get \hat{h}_1 and \hat{h}_2.
 - Apply \hat{h}_1 and \hat{h}_2 to S_i and compute $Err_{\text{test}}(\hat{h}_1)$ and $Err_{\text{test}}(\hat{h}_2)$.
- Estimate
 - Average $Err_{\text{test}}(\hat{h}_1)$ is estimate of $E_i(Err_{\text{test}}(A_1(S_{\text{train}})))$
 - Average $Err_{\text{test}}(\hat{h}_2)$ is estimate of $E_i(Err_{\text{test}}(A_2(S_{\text{train}})))$
 - Count how often $Err_{\text{test}}(\hat{h}_1) > Err_{\text{test}}(\hat{h}_2)$ and $Err_{\text{test}}(\hat{h}_1) < Err_{\text{test}}(\hat{h}_2)$