Model Selection and Assessment

CS4780/5780 – Machine Learning
Fall 2013

Thorsten Joachims
Cornell University

Reading:
Mitchell Chapter 5

(http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.3325)
Outline

• Model Selection
 – Controlling overfitting in decision trees
 – Train, validation, test
 – K-fold cross validation

• Evaluation
 – What is the true error of classification rule h?
 – Is rule h_1 more accurate than h_2?
 – Is learning algorithm A1 better than A2?
Overfitting

Note: Accuracy = 1.0 - Error [Mitchell]
Controlling Overfitting in Decision Trees

• Early Stopping: Stop growing the tree and introduce leaf when splitting no longer “reliable”.
 – Restrict size of tree (e.g., number of nodes, depth)
 – Minimum number of examples in node
 – Threshold on splitting criterion

• Post Pruning: Grow full tree, then simplify.
 – Reduced-error tree pruning
 – Rule post-pruning
Reduced-Error Pruning
• **Training:** Run learning algorithm m times (e.g. different parameters).

• **Validation Error:** Errors $Err_{s_{val}}(\hat{h}_i)$ is an estimates of $Err_{p}(\hat{h}_i)$ for each h_i.

• **Selection:** Use h_i with min $Err_{s_{val}}(\hat{h}_i)$ for prediction on test examples.
K-fold Cross Validation

• Given
 – Sample of labeled instances S
 – Learning Algorithms A
• Compute
 – Randomly partition S into k equally sized subsets $S_1 \ldots S_k$
 – For i from 1 to k
 • Train A on $S_1 \ldots S_{i-1} S_{i+1} \ldots S_k$ and get \hat{h}.
 • Apply \hat{h} to S_i and compute $\text{Err}_{S_i}(\hat{h})$.
• Estimate
 – Average $\text{Err}_{S_i}(\hat{h})$ is estimate of average prediction error of rules produced by A, namely $E_S(\text{Err}_P(A(S_{\text{train}})))$
Text Classification Example: “Corporate Acquisitions” Results

• Unpruned Tree (ID3 Algorithm):
 – Size: 437 nodes Training Error: 0.0% Test Error: 11.0%

• Early Stopping Tree (ID3 Algorithm):
 – Size: 299 nodes Training Error: 2.6% Test Error: 9.8%

• Reduced-Error Tree Pruning (C4.5 Algorithm):
 – Size: 167 nodes Training Error: 4.0% Test Error: 10.8%

• Rule Post-Pruning (C4.5 Algorithm):
 – Size: 164 tests Training Error: 3.1% Test Error: 10.3%
 – Examples of rules
 • IF vs = 1 THEN - [99.4%]
 • IF vs = 0 & export = 0 & takeover = 1 THEN + [93.6%]
Evaluating Learned Hypotheses

- **Goal**: Find h with small prediction error $Err_P(h)$ over $P(X,Y)$.
- **Question**: How good is $Err_P(\hat{h})$ of \hat{h} found on training sample S_{train}.

- **Training Error**: Error $Err_{S_{train}}(\hat{h})$ on training sample.
- **Test Error**: Error $Err_{S_{test}}(\hat{h})$ is an estimate of $Err_P(\hat{h})$.

Real-world Process

drawn i.i.d.

Split randomly

Sample S

Split randomly

Training Sample S_{train}
$(x_1,y_1), \ldots, (x_n,y_n)$

Learner (incl. ModSel)
\hat{h}

Test Sample S_{test}
$(x_1,y_1), \ldots (x_k,y_k)$
What is the True Error of a Hypothesis?

• Given
 – Sample of labeled instances S
 – Learning Algorithm A

• Setup
 – Partition S randomly into S_{train} (70%) and S_{test} (30%)
 – Train learning algorithm A on S_{train}, result is \hat{h}.
 – Apply \hat{h} to S_{test} and compare predictions against true labels.

• Test
 – Error on test sample $\text{Err}_{S_{\text{test}}} (\hat{h})$ is estimate of true error $\text{Err}_P (\hat{h})$.
 – Compute confidence interval.

Training Sample S_{train}
$(x_1, y_1), \ldots, (x_n, y_n)$

S_{train} → Learner → \hat{h} → Test Sample S_{test}
$(x_1, y_1), \ldots, (x_k, y_k)$
Binomial Distribution

• The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$P(X = x|p, n) = \frac{n!}{x!(n-x)!} p^x (1 - p)^{n-x}$$

• Normal approximation: For $np(1-p)\geq 5$ the binomial can be approximated by the normal distribution with
 - Expected value: $E(X) = np$
 - Variance: $Var(X) = np(1-p)$
 - With probability δ, the observation x falls in the interval

$$E(X) \pm z_\delta \sqrt{Var(X)}$$

<table>
<thead>
<tr>
<th>δ</th>
<th>50%</th>
<th>68%</th>
<th>80%</th>
<th>90%</th>
<th>95%</th>
<th>98%</th>
<th>99%</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_δ</td>
<td>0.67</td>
<td>1.00</td>
<td>1.28</td>
<td>1.64</td>
<td>1.96</td>
<td>2.33</td>
<td>2.58</td>
</tr>
</tbody>
</table>
Text Classification Example: Results

• Data
 – Training Sample: 2000 examples
 – Test Sample: 600 examples

• Unpruned Tree:
 – Size: 437 nodes Training Error: 0.0% Test Error: 11.0%

• Early Stopping Tree:
 – Size: 299 nodes Training Error: 2.6% Test Error: 9.8%

• Post-Pruned Tree:
 – Size: 167 nodes Training Error: 4.0% Test Error: 10.8%

• Rule Post-Pruning:
 – Size: 164 tests Training Error: 3.1% Test Error: 10.3%
Is Rule h_1 More Accurate than h_2?
(Same Test Sample)

- **Given**
 - Sample of labeled instances S
 - Learning Algorithms A_1 and A_2

- **Setup**
 - Partition S randomly into S_{train} (70%) and S_{test} (30%)
 - Train learning algorithms A_1 and A_2 on S_{train}, result are \hat{h}_1 and \hat{h}_2.
 - Apply \hat{h}_1 and \hat{h}_2 to S_{val} and compute $Err_{S_{\text{test}}} (\hat{h}_1)$ and $Err_{S_{\text{test}}} (\hat{h}_2)$.

- **Test**
 - Decide, if $Err_p (\hat{h}_1) \neq Err_p (\hat{h}_2)$?
 - Null Hypothesis: $Err_{S_{\text{test}}} (\hat{h}_1)$ and $Err_{S_{\text{test}}} (\hat{h}_2)$ come from binomial distributions with same p.
 - Binomial Sign Test (McNemar’s Test)
Is Rule h_1 More Accurate than h_2? (Different Test Samples)

• Given
 – Samples of labeled instances S_1 and S_2
 – Learning Algorithms A_1 and A_2

• Setup
 – Partition S_1 randomly into S_{train1} (70%) and S_{test1} (30%)
 – Partition S_2 randomly into S_{train2} (70%) and S_{test2} (30%)
 – Train learning algorithm A_1 on S_{train1} and A_2 on S_{train2}, result are \hat{h}_1 and \hat{h}_2.
 – Apply \hat{h}_1 to S_{test1} and \hat{h}_2 to S_{test2} and get $Err_{s_{test1}}(\hat{h}_1)$ and $Err_{s_{test2}}(\hat{h}_2)$.

• Test
 – Decide, if $Err_p(\hat{h}_1) \neq Err_p(\hat{h}_2)$?
 – Null Hypothesis: $Err_{s_{test1}}(\hat{h}_1)$ and $Err_{s_{test2}}(\hat{h}_2)$ come from binomial distributions with same p.
 \rightarrow t-Test (z-Test) [→ see Mitchell book]
Is Learning Algorithm \(A_1\) better than \(A_2\)?

- **Given**
 - \(k\) samples \(S_1 \ldots S_k\) of labeled instances, all i.i.d. from \(P(X,Y)\).
 - Learning Algorithms \(A_1\) and \(A_2\)

- **Setup**
 - For \(i\) from 1 to \(k\)
 - Partition \(S_i\) randomly into \(S_{\text{train}}\) (70%) and \(S_{\text{test}}\) (30%)
 - Train learning algorithms \(A_1\) and \(A_2\) on \(S_{\text{train}}\), result are \(\hat{h}_1\) and \(\hat{h}_2\).
 - Apply \(\hat{h}_1\) and \(\hat{h}_2\) to \(S_{\text{test}}\) and compute \(\text{Err}_{S_{\text{test}}} (\hat{h}_1)\) and \(\text{Err}_{S_{\text{test}}} (\hat{h}_2)\).

- **Test**
 - Decide, if \(E_S(\text{Err}_P(A_1(S_{\text{train}}))) \neq E_S(\text{Err}_P(A_2(S_{\text{train}})))\)?
 - Null Hypothesis: \(\text{Err}_{S_{\text{test}}} (A_1(S_{\text{train}}))\) and \(\text{Err}_{S_{\text{test}}} (A_2(S_{\text{train}}))\) come from same distribution over samples \(S\).
 - \(t\)-Test (z-Test) or Wilcoxon Signed-Rank Test
 - [see Mitchell book]
Approximation via K-fold Cross Validation

• Given
 – Sample of labeled instances S
 – Learning Algorithms A_1 and A_2

• Compute
 – Randomly partition S into k equally sized subsets $S_1 \ldots S_k$
 – For i from 1 to k
 • Train A_1 and A_2 on $S_1 \ldots S_{i-1}S_{i+1} \ldots S_k$ and get \hat{h}_1 and \hat{h}_2.
 • Apply \hat{h}_1 and \hat{h}_2 to S_i and compute $Err_{S_i}(\hat{h}_1)$ and $Err_{S_i}(\hat{h}_2)$.

• Estimate
 – Average $Err_{S_i}(\hat{h}_1)$ is estimate of $E_S(Err_P(A_1(S_{\text{train}})))$
 – Average $Err_{S_i}(\hat{h}_2)$ is estimate of $E_S(Err_P(A_2(S_{\text{train}})))$
 – Count how often $Err_{S_i}(\hat{h}_1) > Err_{S_i}(\hat{h}_2)$ and $Err_{S_i}(\hat{h}_1) < Err_{S_i}(\hat{h}_2)$