Outline of Today

• Who we are?
 – Prof: Thorsten Joachims
 – TAs: Igor Labutov, Ian Lenz, Karthik Raman, Tobias Schnabel, Emma Kilfoyle
 – Consultants: Darren Voon, Ben Shulman, Wenhai Yang, Anthony Fu, Brook Du, Detian Shi, Steve Mandl
• What is learning?
 – Why should a computer be able to learn?
 – Examples of machine learning (ML).
 – What drives research in and use of ML today?
• Syllabus
• Administrivia

(One) Definition of Learning

• Definition [Mitchell]:
 A computer program is said to learn from
 • experience E with respect to some class of
 • tasks T and
 • performance measure P,
 if its performance at tasks in T, as measured by P,
 improves with experience E.

Syllabus

• Instance-Based Learning: k-nearest neighbor, collaborative filtering
• Decision Trees: TDIDT, attribute selection, pruning and overfitting
• Linear Rules: Perceptron, logistic regression, linear regression, duality
• Support Vector Machines: optimal hyperplane, margin, kernels, stability
• Generative Models: naïve Bayes, linear discriminant analysis
• Hidden Markov Models: probabilistic model, estimation, Viterbi
• Structured Output Prediction: predicting sequences, rankings, etc.
• Statistical Learning Theory: PAC learning, VC dimension, error bounds
• Online Learning: experts, bandits, online mistake bounds
• Clustering: HAC Clustering, k-means, mixture of Gaussians
• Recommendation: similarity-based methods, matrix factorization, etc.
• ML Experimentation: hypothesis tests, cross validation, resampling

Textbook and Course Material

• Main Textbooks
 – CS4780 Course Pack from Campus Store
• Additional References (optional)
 – See other references on course web page
• Course Notes
 – Writing on blackboard
 – Slides available on course homepage
 – Video of lecture available on course homepage

Pre-Requisites and Related Courses

• Pre-Requisites
 – Programming skills (e.g. CS 2110)
 – Basic linear algebra (e.g. MATH 2940)
 – Basic probability theory (e.g. CS 2800)
 → Short exam to test prereqs (via CMS)
• Related Courses
 – CS4700: Foundations of Artificial Intelligence
 – CS4758: Robot Learning
 – CS4300: Information Retrieval
 – CS4740: Natural Language Processing
 – CS6780: Advanced Machine Learning
 – CS6784: Advanced Topics in Machine Learning
 – CS6740: Advanced Language Technologies
 – CS6782: Probabilistic Graphical Models
Homework Assignments

- Assignments
 - 5 homework assignments
 - Some problem sets, some programming and experiments
- Policies
 - Assignments are due at the beginning of class on the due date in hardcopy. Code must be submitted via CMS by the same deadline.
 - Assignments turned in late will be charged a 1 percentage point reduction of the cumulated final homework grade for each period of 24 hours for which the assignment is late.
 - Everybody has 5 “free” late days. Use them wisely.
 - No assignments will be accepted after the solutions have been made available (typically 3-5 days after deadline).
 - Typically collaboration of two students (see each assignment for detailed collaboration policy).
 - We run automatic cheating detection. Must state all sources of material used in assignments or project. Please review Cornell Academic Integrity Policy!

Exams and Quizzes

- In-class Quizzes
 - A few per semester
 - No longer than 5 minutes
- Exams
 - Two Prelim exams
 - October 17 (week of fall break)
 - November 26 (week of thanksgiving break)
 - In class
 - No final exam

Final Project

- Organization
 - Self-defined topic related to your interests and research
 - Groups of 3-4 students
 - Each group has TA as advisor
- Deliverables
 - Project proposal (week after fall break)
 - Meetings with TA to discuss progress
 - Poster presentation (last week of classes)
 - Project report (December 11)
 - Peer review (December 18)

Grading

- Deliverables
 - 2 Prelim Exams (50% of Grade)
 - Final Project (15% of Grade)
 - Homeworks (~5 assignments) (25% of Grade)
 - Quizzes (in class) (5% of Grade)
 - PreReq Exam (2% of Grade)
 - Participation (3% of Grade)
- Outlier elimination
 - For homeworks and quizzes, the lowest grade is replaced by the second lowest grade.

How to Get in Touch

- Online
 - Course Homepage (slides, video, references, policies, office hours)
 - Piazza forum (questions and comments)
 - CMS (homeworks and grades)
- Email Addresses
 - Thorsten Joachims: tj@cs.cornell.edu
 - Igor Labutov: iil4@cornell.edu [homework and solutions]
 - Karthik Raman: kr339@cornell.edu [projects]
 - Tobias Schnabel: tbs49@cornell.edu [office hours, piazza, video]
 - Ian Lenz: ianl@cornell.edu [late submissions, CMS, regrades]
- Office Hours
 - Thorsten Joachims:
 - Thursdays 2:40pm – 4:00pm, 4153 Upson Hall
 - Other office hours:
 - See course homepage