Outline of Today

• Who we are?
 – Prof: Thorsten Joachims
 – TAs: Igor Labutov, Ian Lenz, Karthik Raman, Tobias Schnabel, Emma Kilfoyle
 – Consultants: Darren Voon, Ben Shulman, Wenhai Yang, Anthony Fu, Brook Du, Detian Shi, Steve Mandl

• What is learning?
 – Why should a computer be able to learn?
 – Examples of machine learning (ML).
 – What drives research in and use of ML today?

• Syllabus

• Administrivia
(One) Definition of Learning

• Definition [Mitchell]:

 A computer program is said to learn from
 • experience E with respect to some class of
 • tasks T and
 • performance measure P,

 if its performance at tasks in T, as measured by P, improves with experience E.
Syllabus

- Instance-Based Learning: k-nearest neighbor, collaborative filtering
- Decision Trees: TDIDT, attribute selection, pruning and overfitting
- Linear Rules: Perceptron, logistic regression, linear regression, duality
- Support Vector Machines: optimal hyperplane, margin, kernels, stability
- Generative Models: naïve Bayes, linear discriminant analysis
- Hidden Markov Models: probabilistic model, estimation, Viterbi
- Structured Output Prediction: predicting sequences, rankings, etc.
- Statistical Learning Theory: PAC learning, VC dimension, error bounds
- Online Learning: experts, bandits, online mistake bounds
- Clustering: HAC Clustering, k-means, mixture of Gaussians
- Recommendation: similarity-based methods, matrix factorization, etc.
- ML Experimentation: hypothesis tests, cross validation, resampling
Textbook and Course Material

• Main Textbooks
 – CS4780 Course Pack from Campus Store

• Additional References (optional)
 – See other references on course web page

• Course Notes
 – Writing on blackboard
 – Slides available on course homepage
 – Video of lecture available on course homepage
Pre-Requisites and Related Courses

• Pre-Requisites
 – Programming skills (e.g. CS 2110)
 – Basic linear algebra (e.g. MATH 2940)
 – Basic probability theory (e.g. CS 2800)
 → Short exam to test prereqs (via CMS)

• Related Courses
 – CS4700: Foundations of Artificial Intelligence
 – CS4758: Robot Learning
 – CS4300: Information Retrieval
 – CS4740: Natural Language Processing
 – CS6780: Advanced Machine Learning
 – CS6784: Advanced Topics in Machine Learning
 – CS6740: Advanced Language Technologies
 – CS6782: Probabilistic Graphical Models
Homework Assignments

• Assignments
 – 5 homework assignments
 – Some problem sets, some programming and experiments

• Policies
 – Assignments are due at the beginning of class on the due date in hardcopy. Code must be submitted via CMS by the same deadline.
 – Assignments turned in late will be charged a 1 percentage point reduction of the cumulated final homework grade for each period of 24 hours for which the assignment is late.
 – Everybody has 5 “free” late days. Use them wisely.
 – No assignments will be accepted after the solutions have been made available (typically 3-5 days after deadline).
 – Typically collaboration of two students (see each assignment for detailed collaboration policy).
 – We run automatic cheating detection. Must state all sources of material used in assignments or project. Please review Cornell Academic Integrity Policy!
Exams and Quizzes

• In-class Quizzes
 – A few per semester
 – No longer than 5 minutes

• Exams
 – Two Prelim exams
 • October 17 (week of fall break)
 • November 26 (week of thanksgiving break)
 – In class
 – No final exam
Final Project

• Organization
 – Self-defined topic related to your interests and research
 – Groups of 3-4 students
 – Each group has TA as advisor

• Deliverables
 – Project proposal (week after fall break)
 – Meetings with TA to discuss progress
 – Poster presentation (last week of classes)
 – Project report (December 11)
 – Peer review (December 18)
Grading

• Deliverables
 – 2 Prelim Exams (50% of Grade)
 – Final Project (15% of Grade)
 – Homeworks (~5 assignments) (25% of Grade)
 – Quizzes (in class) (5% of Grade)
 – PreReq Exam (2% of Grade)
 – Participation (3% of Grade)

• Outlier elimination
 – For homeworks and quizzes, the lowest grade is replaced by the second lowest grade.
How to Get in Touch

• Online
 – Course Homepage (slides, video, references, policies, office hours)
 – Piazza forum (questions and comments)
 – CMS (homeworks and grades)

• Email Addresses
 – Thorsten Joachims: tj@cs.cornell.edu
 – Igor Labutov: iil4@cornell.edu [homework and solutions]
 – Karthik Raman: kr339@cornell.edu [projects]
 – Tobias Schnabel: tbs49@cornell.edu [office hours, piazza, video]
 – Ian Lenz: inl3@cornell.edu [late submissions, CMS, regrades]

• Office Hours
 – Thorsten Joachims:
 • Thursdays 2:40pm – 4:00pm, 4153 Upson Hall
 – Other office hours:
 • See course homepage