Modeling Sequence Data

CS4780/5780 – Machine Learning
Fall 2012

Thorsten Joachims
Cornell University

Reading:
Manning/Schuetze, Sections 9.1-9.3 (except 9.3.1)
Leeds Online HMM Tutorial (except Forward and Forward/Backward Algorithm)
Outline

• Markov Models in Classification
 – A “less naïve” Bayes for text classification

• Hidden Markov Models
 – Part-of-speech tagging
 – Viterbi Algorithm
 – Estimation with fully observed training data
“Less Naïve” Bayes Classifier

• Example: Classify sentences as insulting / not insulting

<table>
<thead>
<tr>
<th>text</th>
<th>Insult?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\overline{x}_1) = (Peter, is, nice, and, not, stupid)</td>
<td>-1</td>
</tr>
<tr>
<td>(\overline{x}_2) = (Peter, is, not, nice, and, stupid)</td>
<td>+1</td>
</tr>
</tbody>
</table>

• Assumption (l words in document)

 - \(P(X = x | Y = +1) \)

 \[= P(W_1 = w_1 | Y = +1) \prod_{i=2}^{l} P(W_i = w_i | W_{i-1} = w_{i-1}, Y = +1) \]

 - \(P(X = x | Y = -1) \)

 \[= P(W_1 = w_1 | Y = -1) \prod_{i=2}^{l} P(W_i = w_i | W_{i-1} = w_{i-1}, Y = -1) \]

• Decision Rule

\[
h_{\text{less}}(x) = \arg\max_{y \in \{+1, -1\}} \left\{ P(Y = y)P(W_1 = w_1 | Y = y) \prod_{i=2}^{l} P(W_i = w_i | W_{i-1} = w_{i-1}, Y = y) \right\}
\]
Markov Model

• Definition
 – Set of States: \(s_1, \ldots, s_k \)
 – Start probabilities: \(P(S_1 = s) \)
 – Transition probabilities: \(P(S_i = s \mid S_{i-1} = s') \)

• Random walk on graph
 – Start in state \(s \) with probability \(P(S_1 = s) \)
 – Move to next state with probability \(P(S_i = s \mid S_{i-1} = s') \)

• Assumptions
 – Limited dependence: Next state depends only on previous state, but no other state (i.e. first order Markov model)
 – Stationary: \(P(S_i = s \mid S_{i-1} = s') \) is the same for all \(i \)
Part-of-Speech Tagging Task

• Assign the correct part of speech (word class) to each word in a document
 “The/DT planet/NN Jupiter/NNP and/CC its/PRP moons/NNS are/VBP in/IN effect/NN a/DT mini-solar/JJ system/NN ,/, and/CC Jupiter/NNP itself/PRP is/VBZ often/RB called/VBN a/DT star/NN that/IN never/RB caught/VBN fire/NN ./.”

• Needed as an initial processing step for a number of language technology applications
 – Information extraction
 – Answer extraction in QA
 – Base step in identifying syntactic phrases for IR systems
 – Critical for word-sense disambiguation (WordNet apps)
 – ...
Why is POS Tagging Hard?

• Ambiguity
 – He will race/VB the car.
 – When will the race/NN end?
 – I bank/VB at CFCU.
 – Go to the bank/NN!

• Average of ~2 parts of speech for each word
 – The number of tags used by different systems varies a lot. Some systems use < 20 tags, while others use > 400.
The POS Learning Problem

- Example

<table>
<thead>
<tr>
<th>sentence</th>
<th>POS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{x}_1 = (I, bank, at, CFCU)$</td>
<td>$\bar{y}_1 = (PRP, V, PREP, N)$</td>
</tr>
<tr>
<td>$\bar{x}_2 = (Go, to, the, bank)$</td>
<td>$\bar{y}_2 = (V, PREP, DET, N)$</td>
</tr>
</tbody>
</table>
Hidden Markov Model for POS Tagging

• States
 – Think about as nodes of a graph
 – One for each POS tag
 – special start state (and maybe end state)

• Transitions
 – Think about as directed edges in a graph
 – Edges have transition probabilities

• Output
 – Each state also produces a word of the sequence
 – Sentence is generated by a walk through the graph
Hidden Markov Model

- States: \(y \in \{s_1, ..., s_k\} \)
- Outputs symbols: \(x \in \{o_1, ..., o_m\} \)
- Starting probability \(P(Y_1 = y_1) \)
 - Specifies where the sequence starts
- Transition probability \(P(Y_i = y_i \mid Y_{i-1} = y_{i-1}) \)
 - Probability that one state succeeds another
- Output/Emission probability \(P(X_i = x_i \mid Y_i = y_i) \)
 - Probability that word is generated in this state

=> Every output+state sequence has a probability

\[
P(x, y) = P(x_1, ..., x_l, y_1, ..., y_l) \\
= P(y_1)P(x_1|y_1) \prod_{i=2}^{l} P(x_i|y_i)P(y_i|y_{i-1})
\]
Estimating the Probabilities

• Given: Fully observed data
 – Pairs of output sequence with their state sequence
• Estimating transition probabilities $P(Y_i | Y_{i-1})$
 \[P(Y_i = a | Y_{i-1} = b) = \frac{\# \text{ of times state } a \text{ follows state } b}{\# \text{ of times state } b \text{ occurs}} \]
• Estimating emission probabilities $P(X_i | Y_i)$
 \[P(X_i = a | Y_i = b) = \frac{\# \text{ of times output } a \text{ is observed in state } b}{\# \text{ of times state } b \text{ occurs}} \]
• Smoothing the estimates
 – Laplace smoothing -> uniform prior
 – See naïve Bayes for text classification
• Partially observed data
 – Expectation Maximization (EM)
Viterbi Example

| $P(X_i | Y_i)$ | I | bank | at | CFCU | go | to | the |
|---------------|---|------|----|------|----|----|-----|
| DET | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.94 |
| PRP | 0.94 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| N | 0.01 | 0.4 | 0.01 | 0.4 | 0.16 | 0.01 | 0.01 |
| PREP | 0.01 | 0.01 | 0.48 | 0.01 | 0.01 | 0.47 | 0.01 |
| V | 0.01 | 0.4 | 0.01 | 0.01 | 0.55 | 0.01 | 0.01 |

<table>
<thead>
<tr>
<th>$P(Y_1)$</th>
<th>DET</th>
<th>PRP</th>
<th>N</th>
<th>PREP</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>DET</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRP</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PREP</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| $P(Y_i | Y_{i-1})$ | DET | PRP | N | PREP | V |
|-----------------|-----|-----|---|------|---|
| DET | 0.01 | 0.01 | 0.96 | 0.01 | 0.01 |
| PRP | 0.01 | 0.01 | 0.01 | 0.2 | 0.77 |
| N | 0.01 | 0.2 | 0.3 | 0.3 | 0.19 |
| PREP | 0.3 | 0.2 | 0.3 | 0.19 | 0.01 |
| V | 0.2 | 0.19 | 0.3 | 0.3 | 0.01 |
HMM Decoding: Viterbi Algorithm

• Question: What is the most likely state sequence given an output sequence
 – Given fully specified HMM:
 • \(P(Y_1 = y_1) \),
 • \(P(Y_i = y_i \mid Y_{i-1} = y_{i-1}) \),
 • \(P(X_i = x_i \mid Y_i = y_i) \)
 – Find \(y^* = \arg\max_{y \in \{y_1, \ldots, y_l\}} P(x_1, \ldots, x_l, y_1, \ldots, y_l) \)
 \[
 = \arg\max_{y \in \{y_1, \ldots, y_l\}} \left\{ P(y_1) P(x_1 \mid y_1) \prod_{i=2}^{l} P(x_i \mid y_i) P(y_i \mid y_{i-1}) \right\}
 \]
 – “Viterbi” algorithm has runtime linear in length of sequence
 – Example: find the most likely tag sequence for a given sequence of words
HMM’s for POS Tagging

• Design HMM structure (vanilla)
 – States: one state per POS tag
 – Transitions: fully connected
 – Emissions: all words observed in training corpus

• Estimate probabilities
 – Use corpus, e.g. Treebank
 – Smoothing
 – Unseen words?

• Tagging new sentences
 – Use Viterbi to find most likely tag sequence
Experimental Results

<table>
<thead>
<tr>
<th>Tagger</th>
<th>Accuracy</th>
<th>Training time</th>
<th>Prediction time</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>96.80%</td>
<td>20 sec</td>
<td>18.000 words/s</td>
</tr>
<tr>
<td>TBL Rules</td>
<td>96.47%</td>
<td>9 days</td>
<td>750 words/s</td>
</tr>
</tbody>
</table>

- Experiment setup
 - WSJ Corpus
 - Trigram HMM model
 - Lexicalized
 - from [Pla and Molina, 2001]
Discriminative vs. Generative

• Bayes Rule

\[h_{\text{bayes}}(x) = \arg\max_{y \in Y} \left[P(Y = y|X = x) \right] \]

\[= \arg\max_{y \in Y} \left[P(X = x|Y = y)P(Y = y) \right] \]

• Generative:
 – Make assumptions about \(P(X = x|Y = y) \) and \(P(Y = y) \)
 – Estimate parameters of the two distributions

• Discriminative:
 – Define set of prediction rules (i.e. hypotheses) \(H \)
 – Find \(h \) in \(H \) that best approximates the classifications made by

\[h_{\text{bayes}}(x) = \arg\max_{y \in Y} \left[P(Y = y|X = x) \right] \]

• Question: Can we train HMM’s discriminately?
 – Later in semester: discriminative training of HMM and general structured prediction.