Support Vector Machines: Kernels

CS4780/5780 – Machine Learning
Fall 2012

Thorsten Joachims
Cornell University

Reading: Schoelkopf/Smola Chapter 7.4, 7.6, 7.8
Cristianini/Shawe-Taylor 3.1, 3.2, 3.3.2, 3.4
Outline

• Transform a linear learner into a non-linear learner
• Kernels can make high-dimensional spaces tractable
• Kernels can make non-vectorial data tractable
Problem:
- some tasks have non-linear structure
- no hyperplane is sufficiently accurate
How can SVMs learn non-linear classification rules?
Extending the Hypothesis Space

Idea: add more features

→ Learn linear rule in feature space.

Example:

→ The separating hyperplane in feature space is degree two polynomial in input space.
Example

- **Input Space:** \(\tilde{x} = (x_1, x_2) \) (2 attributes)
- **Feature Space:** \(\Phi(\tilde{x}) = (x_1^2, x_2^2, x_1, x_2, x_1 x_2, 1) \) (6 attributes)
Dual SVM Optimization Problem

• Primal Optimization Problem

\[
\text{minimize: } \quad P(w, b, \xi) = \frac{1}{2} w \cdot w + C \sum_{i=1}^{n} \xi_i \\
\text{subject to: } \quad \forall_{i=1}^{n} : y_i (w \cdot x_i + b) \geq 1 - \xi_i \\
\forall_{i=1}^{n} : \xi_i > 0
\]

• Dual Optimization Problem

\[
\text{maximize: } \quad D(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j (\tilde{x}_i \cdot \tilde{x}_j) \\
\text{subject to: } \quad \sum_{i=1}^{n} y_i \alpha_i = 0 \\
\forall_{i=1}^{n} : 0 \leq \alpha_i \leq C
\]

• Theorem: If \(w^* \) is the solution of the Primal and \(\alpha^* \) is the solution of the Dual, then

\[
\tilde{w}^* = \sum_{i=1}^{n} \alpha_i^* y_i \tilde{x}_i
\]
Kernels

• Problem:
 – Very many Parameters! Polynomials of degree p over N attributes in input space lead to $O(Np)$ attributes in feature space!

• Solution:
 – The dual OP depends only on inner products
 \Rightarrow Kernel Functions $K(\vec{a}, \vec{b}) = \Phi(\vec{a}) \cdot \Phi(\vec{b})$

• Example:
 – For $\Phi(\vec{x}) = (x_1^2, x_2^2, \sqrt{2}x_1, \sqrt{2}x_2, \sqrt{2}x_1x_2, 1)$ calculating $K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2$ computes inner product in feature space.

\Rightarrow no need to represent feature space explicitly.
SVM with Kernel

• Training:

 \[
 \text{maximize: } D(\vec{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_i y_j \alpha_i \alpha_j K(\vec{x}_i, \vec{x}_j)
 \]

 subject to: \[
 \sum_{i=1}^{n} y_i \alpha_i = 0
 \]

 \[
 \forall_{i=1}^{m} : 0 \leq \alpha_i \leq C
 \]

• Classification:

 \[
 h(\vec{x}) = \text{sign} \left(\left[\sum_{i=1}^{n} \alpha_i y_i \Phi(\vec{x}_i) \right] \cdot \Phi(\vec{x}) + b \right)
 \]

 \[
 = \text{sign} \left(\sum_{i=1}^{n} \alpha_i y_i K(\vec{x}_i, \vec{x}) + b \right)
 \]

• New hypotheses spaces through new Kernels:

 – Linear: \(K(\vec{a}, \vec{b}) = \vec{a} \cdot \vec{b} \)

 – Polynomial: \(K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^d \)

 – Radial Basis Function: \(K(\vec{a}, \vec{b}) = \exp \left(-\gamma [\vec{a} - \vec{b}]^2 \right) \)

 – Sigmoid: \(K(\vec{a}, \vec{b}) = \tanh(\gamma [\vec{a} \cdot \vec{b}] + c) \)
Examples of Kernels

Polynomial

\[K(\vec{a}, \vec{b}) = [\vec{a} \cdot \vec{b} + 1]^2 \]

Radial Basis Function

\[K(\vec{a}, \vec{b}) = \exp\left(-\gamma [\vec{a} - \vec{b}]^2\right) \]
What is a Valid Kernel?

Definition: Let X be a nonempty set. A function is a valid kernel in X if for all n and all $x_1, \ldots, x_n \in X$ it produces a Gram matrix

$$G_{ij} = K(x_i, x_j)$$

that is symmetric

$$G = G^T$$

and positive semi-definite

$$\forall \hat{\alpha}: \hat{\alpha}^T G \hat{\alpha} \geq 0$$
How to Construct Valid Kernels

Theorem: Let K_1 and K_2 be valid Kernels over $X \times X$, $\alpha \geq 0$, $0 \leq \lambda \leq 1$, f a real-valued function on X, $\phi: X \rightarrow \mathbb{R}^m$ with a kernel K_3 over $\mathbb{R}^m \times \mathbb{R}^m$, and K a symmetric positive semi-definite matrix. Then the following functions are valid Kernels

$$K(x,z) = \lambda \ K_1(x,z) + (1-\lambda) \ K_2(x,z)$$
$$K(x,z) = \alpha \ K_1(x,z)$$
$$K(x,z) = K_1(x,z) \ K_2(x,z)$$
$$K(x,z) = f(x) \ f(z)$$
$$K(x,z) = K_3(\phi(x),\phi(z))$$
$$K(x,z) = x^T K z$$
Kernels for Sequences: Two sequences are similar, if they have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For $0 \leq \lambda \leq 1$ consider the following features space

<table>
<thead>
<tr>
<th></th>
<th>c-a</th>
<th>c-t</th>
<th>a-t</th>
<th>b-a</th>
<th>b-t</th>
<th>c-r</th>
<th>a-r</th>
<th>b-r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi(\text{cat})$</td>
<td>λ^2</td>
<td>λ^3</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\phi(\text{car})$</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>λ^3</td>
<td>λ^2</td>
<td>0</td>
</tr>
<tr>
<td>$\phi(\text{bat})$</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>λ^2</td>
<td>λ^3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$\phi(\text{bar})$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>0</td>
<td>0</td>
<td>λ^2</td>
<td>λ^3</td>
</tr>
</tbody>
</table>

$\Rightarrow K(\text{car},\text{cat}) = \lambda^4$, efficient computation via dynamic programming
Kernels for Non-Vectorial Data

• Applications with Non-Vectorial Input Data
 → classify non-vectorial objects
 – Protein classification (x is string of amino acids)
 – Drug activity prediction (x is molecule structure)
 – Information extraction (x is sentence of words)
 – Etc.

• Applications with Non-Vectorial Output Data
 → predict non-vectorial objects
 – Natural Language Parsing (y is parse tree)
 – Noun-Phrase Co-reference Resolution (y is clustering)
 – Search engines (y is ranking)

→ Kernels can compute inner products efficiently!
Properties of SVMs with Kernels

• Expressiveness
 – SVMs with Kernel can represent any boolean function (for appropriate choice of kernel)
 – SVMs with Kernel can represent any sufficiently “smooth” function to arbitrary accuracy (for appropriate choice of kernel)

• Computational
 – Objective function has no local optima (only one global)
 – Independent of dimensionality of feature space

• Design decisions
 – Kernel type and parameters
 – Value of C
SVMs for other Problems

- Multi-class Classification
 - [Schoelkopf/Smola Book, Section 7.6]
- Regression
 - [Schoelkopf/Smola Book, Section 1.6]
- Outlier Detection
- Structured Output Prediction