Support Vector Machines

CS4780 - Machine Learning Fall 2009

Thorsten Joachims Cornell University

Reading: Schoelkopf/Smola Chapter 7.3, 7.5 Cristianini/Shawe-Taylor Chapter 2-2.1.1

(Batch) Perceptron Algorithm

Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \vec{x}_i \in \Re^N, y_i \in \{-1, 1\},$ $\eta \in \Re, I \in [1, 2, ...]$

Algorithm:

- $\vec{w}_0 = \vec{0}$, k = 0
- repeat
 - FOR i=1 TO n
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0$ ### makes mistake
 - $\cdot \ \vec{w}_{k+1} = \vec{w}_k + \eta y_i \vec{x}_i$
 - k = k + 1
 - * ENDIF
 - ENDFOR
- until I iterations reached

Dual (Batch) Perceptron Algorithm

Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \vec{x}_i \in \Re^N, y_i \in \{-1, 1\},$ $I \in [1, 2, ..]$

Dual Algorithm:

- Primal Algorithm:
- $\forall i \in [1..n]$: $\alpha_i = 0$
- repeat
- FOR *i*=1 TO *n* * IF $y_i \left(\sum_{j=1}^n \alpha_j y_j (\vec{x}_j \cdot \vec{x}_i) \right) \le 0$ $\alpha_i = \alpha_i + 1$

 - * ENDIF - ENDFOR
- until I iterations reached
- $\vec{w} = \vec{0}, k = 0$ repeat
 - FOR i=1 TO n
 - * IF $y_i(\vec{w} \cdot \vec{x_i}) \le 0$ $\cdot \vec{w} = \vec{w} + y_i \vec{x_i}$
 - * ENDIF
 - ENDFOR
 - until I iterations reached

SVM Solution as Linear Combination

• **Primal OP:** minimize: $P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$ subject to: $\forall_{i=1}^n: y_i[\vec{w} \cdot \vec{x}_i + b] \geq 1 - \xi_i$ $\forall_{i=1}^n: \xi_i > 0$

- Theorem: The solution w^* can always be written as a $\vec{w}^* = \sum_{i=1}^n \alpha_i y_i \vec{x}_i \text{ with } 0 \leq \alpha_i \leq C$ S. linear combination of the training vectors.
- · Properties:
 - Factor α_i indicates "influence" of training example (x_i, y_i) .
 - If $\xi_i > 0$, then $\alpha_i = C$.
 - If $0 ≤ \alpha_i < C$, then $\xi_i = 0$.
 - (x_i, y_i) is a Support Vector, if and only if $\alpha_i > 0$.
 - If $0 < \alpha_i < C$, then $y_i(x_i w+b)=1$.
 - SVM-light outputs α_i using the "-a" option

Dual SVM Optimization Problem

· Primal Optimization Problem

 $\begin{array}{ll} \text{minimize:} & P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \, \vec{w} \cdot \vec{w} + C \, \sum_{i=1}^n \xi_i \\ \text{subject to:} & \forall_{i=1}^n : y_i [\vec{w} \cdot \vec{x}_i + b] \geq 1 - \xi_i \end{array}$ $\forall_{i=1}^{n} : \xi_{i} > 0$

· Dual Optimization Problem

ual Optimization Propers $D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$ maximize: $D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$ subject to: $\sum_{i=1}^n y_i \alpha_i = 0$ $\forall_{i=1}^n : 0 \le \alpha_i \le C$

• **Theorem:** If w^* is the solution of the Primal and α^* is the solution of the Dual, then $\vec{w}^* = \sum_{i=1}^n \alpha_i^* y_i \vec{x}_i$

Leave-One-Out (i.e. n-fold CV)

Training Set: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$

Approach: Repeatedly leave one example out for testing.

train on $(x_2, y_2), (x_3, y_3), (x_4, y_4), ..., (x_n, y_n)$ $(x_1, y_1), (x_3, y_3), (x_4, y_4), ..., (x_n, y_n)$ (x_2, y_2) $(x_1, y_1), (x_2, y_2), (x_4, y_4), \dots, (x_n, y_n)$ (x_3, y_3) $(x_1, y_1), (x_2, y_2), (x_3, y_3), \dots, (x_{n-1}, y_{n-1})$ (x_n, y_n)

Estimate: $\overline{Err_{loo}}(A) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h_i(\vec{x}_i), y_i)$

Question: Is there a cheaper way to compute this estimate?

Necessary Condition for Leave-One-Out Error

Lemma: For SVM, $[h_i(\vec{x}_i) \neq y_i] \Longrightarrow \left[2\alpha_i R^2 + \xi_i \geq 1\right]$ Input:

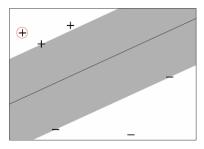
- $-\alpha_i$ dual variable of example i
- $-\xi_i$ slack variable of example i
- $\|x\| \le R$ bound on length

Example:

Value of 2 $\alpha_i R^2 + \xi_i$	Leave-one-out Error?
0.0	Correct
0.7	Correct
3.5	Error
0.1	Correct
1.3	Correct

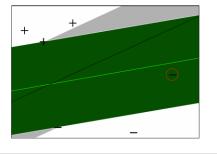
Case 1: Example is not SV

Criterion: $(\alpha_i = 0) \Rightarrow (\xi_i = 0) \Rightarrow (2 \alpha_i R^2 + \xi_i < 1) \Rightarrow Correct$



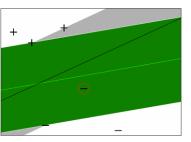
Case 2: Example is SV with Low Influence

Criterion: $(\alpha_i < 0.5/R^2 < C) \Rightarrow (\xi_i = 0) \Rightarrow (2\alpha_i R^2 + \xi_i < 1) \Rightarrow Correct$



Case 3: Example has Small Training Error

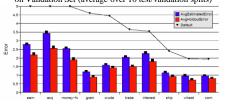
 $\textbf{Criterion:}\ (\alpha_I=C)\Rightarrow (\xi_i\!<1\text{-}2CR^2)\Rightarrow (2\alpha_iR^2\!+\!\xi_i\!<1)\Rightarrow Correct$



Experiment: Reuters Text Classification

Experiment Setup

- 6451 Training Examples
- 6451 Validation Examples to estimate true Prediction Error
- Comparison between Leave-One-Out upper bound and error on Validation Set (average over 10 test/validation splits)



Fast Leave-One-Out Estimation for SVMs

Lemma: Training errors are always Leave-One-Out Errors. **Algorithm:**

- $-(R,\alpha,\xi) = trainSVM(S_{train})$
- FOR $(x_i, y_i) \in S_{train}$
 - IF $\xi_i > 1$ THEN loo++;
 - ELSE IF (2 α_i $R^2+\xi_i<1)$ THEN loo = loo;
 - + ELSE trainSVM(S $_{train} \setminus \{(x_i,\!y_i)\})$ and test explicitly

Experiment:

Training Sample	Retraining Steps (%)	CPU-Time (sec)
Reuters (n=6451)	0.58%	32.3
WebKB (n=2092)	20.42%	235.4
Ohsumed (n=10000)	2.56%	1132.3