Outline of Today

- Who we are?
- What is learning?
- Why should a computer be able to learn?
- Examples of machine learning
- What it takes to build a learning system?
- Syllabus
- Administrative
 - Pre-Requisites
 - Assignments
 - Grading
 - Textbook and course material
 - Office Hours

(One) Definition of Learning

Definition [Mitchell]:
A computer program is said to learn from
- experience E with respect to some class of
- tasks T and
- performance measure P,
if its performance at tasks in T, as measured by P,
improves with experience E.

Syllabus

- **Concept Learning:** Hypothesis space, version space, target concept
- **Instance-Based Learning:** K-nearest neighbor, collaborative filtering
- **Decision Trees:** ID3/IDT, Representation bias vs. search bias
- **Hypothesis Tests:** Confidence intervals, resampling estimates
- **Linear Rules:** Perceptron, Winnow
- **Support Vector Machines:** Optimal hyperplane, Kernels
- **Generative Models:** Naive Bayes, MAP and Bayesian learning
- **Hidden Markov Models:** Viterbi, Expectation-Maximization
- **Complex Output Prediction:** natural language parsing
- **Learning Theory:** PAC learning, Mistake Bounds, No-Free-Lunch
- **Clustering:** HAC, k-means, latent semantic indexing

Textbook and Course Material

- **Main Textbook**
 - Cristianini, Shawe-Taylor, "Introduction to Support Vector Machines", Cambridge University Press, 2000. ([online])
 - Schoelkopf, Smola, "Learning with Kernels", MIT Press, 2001. ([online])
 - Course pack (one chapter)
- **Additional Reference (optional)**
- **Course Notes**
 - Slides available on course homepage
 - Material on blackboard

Pre-Requisites and Related Courses

- **Pre-Requisites**
 - Programming skills (e.g. CS 2110)
 - Basic linear algebra (e.g. MATH2940)
 - Basic probability theory (e.g. CS 2800).
- **Related Courses**
 - CS4760: Foundations of Artificial Intelligence
 - CS4300: Information Retrieval
 - CS6780: Advanced Machine Learning
 - CS6787: Advanced Topics in Machine Learning
 - CS6740: Advanced Language Technologies
Assignments and Grading

- **Deliverables**
 - 2 Prelim Exams (40% of Grade)
 - Final Project (15% of Grade)
 - Homeworks (~5 assignments) (40% of Grade)
 - Class Participation (5% of Grade)

- **Policies**
 - Assignments are due at the beginning of class on the due date.
 - Assignments turned in late will drop 5 points for each period of 24 hours for which the assignment is late.
 - No assignments will be accepted after the solutions have been made available.
 - Collaborations are not allowed (except when explicitly permitted).
 - Must state all sources of material used in assignments or project.
 - Academic Integrity

Final Project

- **Organization**
 - Self-defined topic related to your interests and research
 - Groups of 3-4 students
 - Each group has TA as advisor

- **Deliverables**
 - Project proposal (~ week after spring break)
 - Meetings with TA to discuss progress
 - Short presentation in class (last week of classes)
 - Project report (~ exam period)

How to Get in Touch

- **WWW Page**

- **Email Addresses**
 - Thorsten Joachims: tj@cs.cornell.edu
 - Mark Verheggen: mark@cs.cornell.edu
 - Rick Ducott, Haden Hooyeon Lee, Vaibhav Goel
 - Mailing list to all course staff: cs4780-hl@lists.cs.cornell.edu (?)

- **Office Hours**
 - Thorsten Joachims:
 - Tuesdays 4:30pm – 5:30pm, 4153 Upson Hall (not 9/1)
 - Other office hours:
 - TBD