Modeling Sequence Data

CS478 – Machine Learning
Spring 2008
Thorsten Joachims
Cornell University

Reading:
Leeds Online HMM Tutorial
(except Forward and Forward/Backward Algorithm)

Outline
• Markov Models in Classification
 – A “less naïve” Bayes for text classification
• Hidden Markov Models
 – Part-of-speech tagging
 – Viterbi Algorithm
 – Estimation with fully observed training data

“Less Naïve” Bayes Classifier

• Example: Classify sentences as insulting/not insulting

Markov Model

• Definition
 – Set of States: \(s_1, \ldots, s_k \)
 – Start probabilities: \(P(S=s) \)
 – Transition probabilities: \(P(S=s' | Sprev=s) \)

• Random walk on graph
 – Start in state \(s \) with probability \(P(S=s) \)
 – Move to next state with probability \(P(S=s' | Sprev=s) \)

• Assumptions
 – Limited dependence: Next state depends only on previous state, but no other state (i.e. first order Markov model)
 – Stationary: \(P(S=s | Sprev=s) \) does not change

Part-of-Speech Tagging Task

• Assign the correct part of speech (word class) to each word in a document
 “The DT planet/NN Jupiter/NNP and/CC its/PRP moons/NNS are/VBP in/IN effect/NN a DT mini-solar/JJ system/NN & and/CC Jupiter/NNP itself/PRP is/VBP often/RB called/VBN a DT star/NN that/IN revolve/RB caused/VBN fire/NN .”

• Needed as an initial processing step for a number of language technology applications
 – Information extraction
 – Answer extraction in QA
 – Base step in identifying syntactic phrases for IR systems
 – Critical for word-sense disambiguation (WordNet apps)

• Ambiguity
 – He will race/VB the car.
 – When will the race/NOUN end?
 – I bank/VB at CFCU.
 – Go to the bank/NOUN end?

• Average of ~2 parts of speech for each word

Why is POS Tagging Hard?

• The number of tags used by different systems varies a lot. Some systems use < 20 tags, while others use > 400.
The POS Learning Problem

- Example

<table>
<thead>
<tr>
<th>POS</th>
<th>(, , , , , ,)</th>
<th>(, , , ,)</th>
<th>(, ,)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep</td>
<td>(, , , ,)</td>
<td>(, ,)</td>
<td>(,)</td>
</tr>
<tr>
<td>Prepos</td>
<td>(, , , ,)</td>
<td>(, ,)</td>
<td>(,)</td>
</tr>
</tbody>
</table>

Hidden Markov Model for POS Tagging

- States
 - Think about as nodes of a graph
 - One for each POS tag
 - Special start state (and maybe end state)

- Transitions
 - Think about as directed edges in a graph
 - Edges have transition probabilities

- Output
 - Each state also produces a word of the sequence
 - Sentence is generated by a walk through the graph

Hidden Markov Model

- States: \(y \in \{ s_1, \ldots, s_k \} \)
- Outputs symbols: \(x \in \{ o_1, \ldots, o_m \} \)
- Starting probability \(P(Y_1 = y_1) \)
 - Specifies where the sequence starts
- Transition probability \(P(Y_i = y_i | Y_{i-1} = y_{i-1}) \)
 - Probability that one states succeeds another
- Output/Emission probability \(P(X_i = x_i | Y_i = y_i) \)
 - Probability that word is generated in this state

\[P(x_1, x_2, y_1, y_2) = \prod_i P(y_i | y_{i-1}) \prod_i P(x_i | y_i) P(y_1) \]

HMM Decoding: Viterbi Algorithm

- Question: What is the most likely state sequence given an output sequence
- Given fully specified HMM:
 - \(P(Y_1 = y_1) \)
 - \(P(Y_{i-1} = y_{i-1}) \)
 - \(P(X_i = x_i | Y_i = y_i) \)
- Find

\[\max_{y_1, y_2, \ldots, y_n} \prod_i P(y_i | y_{i-1}) \prod_i P(x_i | y_i) P(y_1) \]

- “Viterbi” algorithm has runtime linear in length of sequence
- Example: find the most likely tag sequence for a given sequence of words

Viterbi Example

| \(P(X=x | Y=y) \) | I | bank | at | CFCU | ge | to | the |
|---------------------|---|------|---|------|---|----|-----|
| DET 0.01 0.01 0.01 0.01 0.01 0.01 0.94 |
| PRP 0.94 0.01 0.01 0.01 0.01 0.01 0.01 |
| N 0.01 0.4 0.01 0.4 0.16 0.01 0.01 |
| PREP 0.01 0.01 0.48 0.01 0.01 0.47 0.01 |
| Y 0.01 0.4 0.01 0.01 0.55 0.01 0.01 |

| \(P(Y=y) \) | \(P(Y|y_{i-1}) \) | DET | PRP | N | PREP | V |
|-----------|----------------|-----|-----|---|------|---|
| DET 0.3 0.01 0.96 0.01 0.01 0.01 |
| PRP 0.3 0.01 0.01 0.01 0.2 0.77 |
| N 0.1 0.01 0.2 0.3 0.19 |
| PREP 0.1 0.3 0.19 0.3 0.19 |
| V 0.2 0.2 0.19 0.3 0.3 0.01 |

Estimating the Probabilities

- Given: Fully observed data
 - Pairs of output sequence with their state sequence
- Estimating transition probabilities \(P(S_{t+1} | S_t) \)

\[P(Y_{i+1} | Y_i) = \frac{\text{# of Times State B Occurs}}{\text{# of Times State A Follows State B}} \]

- Estimating emission probabilities \(P(W | S) \)

\[P(x_i | y_i) = \frac{\text{# of Times Output A Is Observed In State B}}{\text{# of Times State B Occurs}} \]

- Smoothing the estimates
 - Laplace smoothing -> uniform prior
 - See naïve Bayes for text classification
- Partially observed data: Expectation Maximization (EM)
HMM’s for POS Tagging

- Design HMM structure (vanilla)
 - States: one state per POS tag
 - Transitions: fully connected
 - Emissions: all words observed in training corpus
- Estimate probabilities
 - Use corpus, e.g. Treebank
 - Smoothing
 - Unseen words?
- Tagging new sentences
 - Use Viterbi to find most likely tag sequence

Experimental Results

<table>
<thead>
<tr>
<th>Tagger</th>
<th>Accuracy</th>
<th>Training time</th>
<th>Prediction time</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMM</td>
<td>96.80%</td>
<td>20 sec</td>
<td>18.000 words/s</td>
</tr>
<tr>
<td>TBL Rules</td>
<td>96.47%</td>
<td>9 days</td>
<td>750 words/s</td>
</tr>
</tbody>
</table>

- Experiment setup
 - WSJ Corpus
 - Trigram HMM model
 - Lexicalized
 - from [Pla and Molina, 2001]

Discriminative vs. Generative

Bayes Rule

\[p(s|x) = \frac{p(x|s)p(s)}{p(x)} \]

Generative:

- Make assumptions about \(p(x|s)p(s) \)
- Estimate parameters of the two distributions

Discriminative:

- Define set of prediction rules (i.e. hypotheses) \(H \)
- Find \(h \) in \(H \) that best approximates

\[p(s|x) = \arg\max_{s} p(x|s)p(s) \]

Question: Can we train HMM’s discriminately?

Idea for Discriminative Training of HMM

Bayes Rule

\[p(s|x) = \frac{p(x|s)p(s)}{p(x)} \]

Model \(p(x|y=s) \) with \(\phi(x,y) \) so that

\[(\arg\max_{s} p(x|s)p(s)) = (\arg\max_{s} \sum_{y} \phi(x,y)) \]

Intuition:

- Tune \(\phi \) so that correct \(y \) has the highest value of \(\sum_{x} \phi(x,y) \)
- \(\phi(x,y) \) is a feature vector that describes the match between \(x \) and \(y \)

Structural Support Vector Machine

- Joint features \(\phi(x,y) \) describe match between \(x \) and \(y \)
- Learn weights \(\theta \) so that \(\theta^T \phi(x,y) \) is max for correct \(y \)

\[\sum_{x} \phi(x,y) \]

Structural SVM Training Problem

Hard-margin optimization problem:

\[\min_{\theta} \frac{1}{2} \theta^T \theta \]

s.t. \(\forall y \in Y \setminus \{y\}: \theta^T \phi(x,y) \geq \theta^T \phi(x,y) + 1 \)

- Training Set: \((x_1,y_1), \ldots, (x_m,y_m) ~ P(X,Y)\)
- Prediction Rule: \(\hat{y}_{\text{disc}}(x) = \arg\max_{y} \theta^T \phi(x,y) \)
- Optimization:
 - Correct label \(y \) must have higher value of \(\theta^T \phi(x,y) \) than any incorrect label \(y \)
 - Find weight vector with smallest norm
 - Polynomial time algorithm (e.g. SVM-struct)
Experiment: Part-of-Speech Tagging

- **Task**: Given a sequence of words x, predict sequence of tags y.

 - The dog chased the cat → Det→ N→ V→ Det→ N

- Dependencies from tag-tag transitions in Markov model.

- **Model**: Markov model with one state per tag and words as emissions

 - Each word described by ~250,000 dimensional feature vector (all word suffixes/prefixes, word length, capitalization …)

- **Experiment (by Dan Fleisher)**

 - Train/test on 7966/1700 sentences from Penn Treebank

- **Input**

 - One feature for each possible output in each possible state

 - One feature for each possible transition

 - One feature for each possible start state

- **Loss Functions**: Soft-Margin Struct SVM

 - Loss function $\Delta(x, y)$ measures match between target and prediction.

- **Soft-Margin Structural SVM**

 - Soft-margin optimization problem:

 \[
 \min_{\theta} \frac{1}{2} \sum_{i,j} c_{ij} \theta_i \theta_j + \sum_i \xi_i
 \]

 \[
 \text{subject to } \sum_{j} \theta_j = 1, \theta_j \geq 0, \xi_i \geq 0
 \]

 - Lemma: The training loss is upper bounded by

 \[
 \text{Err}(\theta) = \frac{1}{n} \sum_{i} \Delta(x_i, y_i) \leq \frac{1}{n} \sum_{i} \xi_i
 \]

- **Loss Functions**: Soft-Margin Struct SVM

 - One feature for each possible output in each possible state

 - One feature for each possible transition

 - One feature for each possible start state

 - Feature values are counts

- **Sparse Approximation Algorithm for Structural SVM**

 - Input $(x_1, y_1), \ldots, (x_n, y_n), c_i$

 - $\mathcal{S} = \emptyset$

 - **REPEAT**

 - **FOR** $i = 1, \ldots, n$

 - compute $g_i = \arg\min_{g} \left\{ \Delta(x_i, y_i, g) + \frac{1}{2} \sum_{j} \theta_j g_j \right\}$

 - if $\Delta(x_i, y_i, g_i) > 0 + \varepsilon$

 - $g = g_i$

 - Add constraint to working set

 - **ENDIF**

 - **ENDFOR**

 - **UNTIL** \mathcal{S} has not changed during iteration

- **NE Identification**

 - **Identify all named locations, named persons, named organizations, dates, times, monetary amounts, and percentages.**

 - The delegation, which included the commander of the army troops, went to the Swiss embassy to sign a new agreement for talks with Bosnian war leader Radovan Karadzic.

 - Esta ha sido el primer encuentro público de la presidenta Chávez respecto a la crisis de Haití. Minube, cuyo secretario de Estado, Warren Christopher, decidió regresar temporalmente para supervisar el proceso de paz y la concatenación de efectivas fuerzas en el país.
Experiment: Named Entity Recognition

- **Data**
 - Spanish Newswire articles
 - 300 training sentences
 - 9 tags
 - no-name,
 - beginning and continuation of person name, organization, location, misc name
 - Output words are described by features (e.g. starts with capital letter, contains number, etc.)
- **Error on test set (% mislabeled tags):**
 - Generative HMM: 9.36%
 - Support Vector Machine HMM: 5.08%

General Problem: Predict Complex Outputs

- **Supervised Learning from Examples**
 - Find function from input space X to output space Y
 $$ h : X \rightarrow Y $$
 - such that the prediction error is low.
- **Typical**
 - Output space is just a single number
 - Classification: $-1, +1$
 - Regression: some real number
- **General**
 - Predict outputs that are complex objects

Examples of Complex Output Spaces

- **Natural Language Parsing**
 - Given a sequence of words x, predict the parse tree y.
 - Dependencies from structural constraints, since y has to be a tree.

Examples of Complex Output Spaces

- **Multi-Label Classification**
 - Given a (bag-of-words) document x, predict a set of labels y.
 - Dependencies between labels from correlations between labels (“iraq” and “oil” in newswire corpus)

Examples of Complex Output Spaces

- **Noun-Phrase Co-reference**
 - Given a set of noun phrases x, predict a clustering y.
 - Structural dependencies, since prediction has to be an equivalence relation.
 - Correlation dependencies from interactions.