Outline of Today

- Who we are?
- What is learning?
- Why should a computer be able to learn?
- Examples of machine learning
- What it takes to build a learning system?
- Syllabus
- Administrivia
 - Pre-Requisites
 - Assignments
 - Grading
 - Textbook and course material
 - Office Hours
- Machine learning case study

(One) Definition of Learning

Definition [Mitchell]:
A computer program is said to learn from
- experience E with respect to some class of
- tasks T and
- performance measure P,
if its performance at tasks in T, as measured by P,
improves with experience E.

Syllabus

- Concept Learning: Hypothesis space, version space, target concept
- Instance-Based Learning: K-nearest neighbor, collaborative filtering
- Decision Trees: TDIDT, Representation bias vs. search bias
- Hypothesis Tests: Confidence intervals, resampling estimates
- Linear Rules: Perceptron, Winnow
- Support Vector Machines: Optimal hyperplane, Kernels
- Generative Models: Naïve Bayes, MAP and Bayesian learning
- Hidden Markov Models: Viterbi, Expectation-Maximization
- Complex Output Prediction: natural language parsing
- Learning Theory: PAC learning, Mistake Bounds, No-Free-Lunch
- Clustering: HAC, k-means, latent semantic indexing
- Reinforcement Learning: Q-Learning, Temporal difference learning

Textbook and Course Material

- Main Textbook
- Additional Reference (optional)
- Handouts for topics not covered in textbook
- Course Notes
 - Slides available on course homepage
 - Material on blackboard

Pre-Requisites and Related Courses

- Pre-Requisites
 - Programming skills (e.g. COM S 211)
 - Basic linear algebra
 - Basic probability theory (e.g. COM S 280).
- Related Courses
 - CS472: Foundations of Artificial Intelligence
 - CS578: Empirical Methods in Machine Learning
 - CS678: Advanced Topics in Machine Learning
 - CS778: Seminar in Machine Learning
 - CS630: Language Technologies
Assignments and Grading

- **Deliverables**
 - 2 Prelim Exams (40% of Grade)
 - Final Project (15% of Grade)
 - Homeworks (~5 assignments) (40% of Grade)
 - Class Participation (5% of Grade)

- **Policies**
 - Assignments are due at the beginning of class on the due date.
 - Assignments turned in late will drop 5 points for each period of 24 hours for which the assignment is late.
 - No assignments will be accepted after the solutions have been made available.
 - Collaborations are not allowed (except when explicitly permitted).
 - Must state all sources of material used in assignments or project.
 - Academic Integrity

Final Project

- **Organization**
 - Self-defined topic related to your interests and research
 - Groups of 3-4 students
 - Each group has TA as advisor

- **Deliverables**
 - Project proposal (~ week after spring break)
 - Meetings with TA to discuss progress
 - Short presentation in class (last week of classes)
 - Project report (~ exam period)

How to Get in Touch

- **WWW Page**

- **Email Addresses**
 - Thorsten Joachims: tj@cs.cornell.edu
 - Rich Caruana: caruana@cs.cornell.edu
 - Chun-Nam Yu: cnyu@cs.cornell.edu
 - Chris Quinn, Bob Albright, Nick Gallo, Dave Golland
 - Mailing list to all course staff: cs478-l@lists.cs.cornell.edu

- **Office Hours**
 - Thorsten Joachims:
 - TBD, 4153 Upson Hall
 - Rich Caruana
 - TBD, 4157 Upson Hall
 - Other office hours:
 - TBD